• Title/Summary/Keyword: radial basis function neural networks

Search Result 142, Processing Time 0.022 seconds

Pattern Classification of Two Classes' Problem Using Polynomial based Radial Basis Function Neural Networks (다항식기반 RBF 신경회로망을 이용한 2-클래스 문제에 대한 패턴분류)

  • Kim, Gil-Sung;Park, Byoung-Jun;Oh, Sung-Kwon
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.451-452
    • /
    • 2007
  • 본 논문에서는 다항식 기반 Radial Basis Function(RBF)신경회로망(Polynomial based Radial Basis Function Neural Networks)을 설계하고 이를 2-클래스 패턴 분류 문제에 응용하여 그 성능을 분석한다. 제안된 다항식기반 RBF 신경회로망은 입력층, 은닉층, 출력 층으로 이루어진다. 입력층은 입력 벡터의 값들을 은닉 층으로 전달하는 기능을 수행하고 은닉층은 Fuzzy c-means 클러스터링을 통하여 뉴런의 출력 값으로 내보낸다. 은닉층과 출력층사이의 연결가중치는 상수, 선형식 또는 이차식으로 이루어지며 경사 하강법에 의해 학습된다. Networks의 최종 출력은 연결가중치와 은닉층 출력의 곱에 의해 퍼지추론의 결과로서 얻어진다. 제안된 다항식기반 RBF 신경회로망은 각기 다른 4종류의 2-클래스 분류 문제에 적용 및 평가되어 분류기로써의 성능을 분석한다.

  • PDF

Using radial basis function neural networks to model torsional strength of reinforced concrete beams

  • Tang, Chao-Wei
    • Computers and Concrete
    • /
    • v.3 no.5
    • /
    • pp.335-355
    • /
    • 2006
  • The application of radial basis function neural networks (RBFN) to predict the ultimate torsional strength of reinforced concrete (RC) beams is explored in this study. A database on torsional failure of RC beams with rectangular section subjected to pure torsion was retrieved from past experiments in the literature; several RBFN models are sequentially built, trained and tested. Then the ultimate torsional strength of each beam is determined from the developed RBFN models. In addition, the predictions of the RBFN models are also compared with those obtained using the ACI 318 Code equations. The study shows that the RBFN models give reasonable predictions of the ultimate torsional strength of RC beams. Moreover, the results also show that the RBFN models provide better accuracy than the existing ACI 318 equations for torsion, both in terms of root-mean-square error and coefficients of determination.

Adaptive Neural Network Control for Robot Manipulators

  • Lee, Min-Jung;Choi, Young-Kiu
    • KIEE International Transaction on Systems and Control
    • /
    • v.12D no.1
    • /
    • pp.43-50
    • /
    • 2002
  • In the recent years neural networks have fulfilled the promise of providing model-free learning controllers for nonlinear systems; however, it is very difficult to guarantee the stability and robustness of neural network control systems. This paper proposes an adaptive neural network control for robot manipulators based on the radial basis function netwo.k (RBFN). The RBFN is a branch of the neural networks and is mathematically tractable. So we adopt the RBFN to approximate nonlinear robot dynamics. The RBFN generates control input signals based on the Lyapunov stability that is often used in the conventional control schemes. The saturation function is also chosen as an auxiliary controller to guarantee the stability and robustness of the control system under the external disturbances and modeling uncertainties.

  • PDF

A Study on the Prediction for Rolling Force Using Radial Basis Function Network in Hot Rolling Mill (방사형기저함수망을 이용한 열간 사상압연의 압연하중 예측에 관한 연구)

  • 손준식;이덕만;김일수;최승갑
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.368-373
    • /
    • 2003
  • A major concern at present is the simultaneous control of transverse thickness profile and flatness in the finishing stages of hot rolling process. The mathematical modeling of hot rolling process has long been recognized to be a desirable approach to investigate rolling operating practice and the design of mill equipment to improve productivity and quality. However, many factors make the mathematical analysis of the rolling process very complex and time-consuming. In order to overcome these problems and to obtain an accurate rolling force, the predicted model of rolling force using neural networks has widely been employed. In this paper, Radial Basis Function Network(RBFN) is applied to improve the accuracy of rolling force prediction in hot rolling mill. In order to verify and analysis the performance of applied neural network, the comparison with the measured rolling force and the predicted results using two different neural networks - RBFN, MLP, has respectively been carried out. The results obtained using RBFN neural network are much more accurate those obtained the MLP.

  • PDF

A Study on the Prediction for Rolling Force Using Radial Basis Function Network in Hot Rolling Mill (방사형기저함수망을 이용한 열간 사상압연의 압연하중 예측에 관한 연구)

  • Son Joon-Sik;Lee Duk-Man;Kim Ill-Soo;Choi Seung-Gap
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.6
    • /
    • pp.29-33
    • /
    • 2004
  • A major concern at present is the simultaneous control of transverse thickness profile and flatness in the finishing stages of hot rolling process. The mathematical modeling of hot rolling process has long been recognized to be a desirable approach to investigate rolling operating practice and the design of mill equipment to improve productivity and quality. However, many factors make the mathematical analysis of the rolling process very complex and time-consuming. In order to overcome these problems and to obtain an accurate rolling force, the predicted model of rolling force using neural networks has widely been employed. In this paper, Radial Basis Function Network(RBFN) is applied to improve the accuracy of rolling force prediction in hot rolling mill. In order to verify and analyze the performance of applied neural network the comparison with the measured rolling force and the predicted results using two different neural networks-RBFN, MLP, has respectively been carried out. The results obtained using RBFN neural network are much more accurate those obtained the MLP.

Self-organized Distributed Networks for Precise Modelling of a System (시스템의 정밀 모델링을 위한 자율분산 신경망)

  • Kim, Hyong-Suk;Choi, Jong-Soo;Kim, Sung-Joong
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.11
    • /
    • pp.151-162
    • /
    • 1994
  • A new neural network structure called Self-organized Distributed Networks (SODN) is proposed for developing the neural network-based multidimensional system models. The learning with the proposed networks is fast and precise. Such properties are caused from the local learning mechanism. The structure of the networks is combination of dual networks such as self-organized networks and multilayered local networks. Each local networks learns only data in a sub-region. Large number of memory requirements and low generalization capability for the untrained region, which are drawbacks of conventional local network learning, are overcomed in the proposed networks. The simulation results of the proposed networks show better performance than the standard multilayer neural networks and the Radial Basis function(RBF) networks.

  • PDF

Decentralized Control of Robot Manipulator Using the RBF Neural Network (RBF 신경망을 이용한 로봇 매니퓰레이터의 분산제어)

  • Won, Seong-Un;Kim, Yeong-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.657-660
    • /
    • 2003
  • Control of multi-link robot arms is a very difficult problem because of the highly nonlinear dynamics. Decentralized control scheme is developed for control of robot manipulators based on RBF(Radial Basis Function) Neural Networks. RBF Neural Networks is used to approximate the coupling forces among the joints, coriolis force, centrifugal force, gravitational force, and frictional force. The compensation controller is also proposed to estimate the bound of approximation error so that the chattering effect of the control effort can be reduced. The proposed scheme does not require an accurate manipulator dynamic, and it is proved that closed-loop system is asymptotic stable despite the gross robot parameter variations. Numerical simulations for two-link robot manipulator are included to show the effectiveness of controller.

  • PDF

Design of Data-centroid Radial Basis Function Neural Network with Extended Polynomial Type and Its Optimization (데이터 중심 다항식 확장형 RBF 신경회로망의 설계 및 최적화)

  • Oh, Sung-Kwun;Kim, Young-Hoon;Park, Ho-Sung;Kim, Jeong-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.639-647
    • /
    • 2011
  • In this paper, we introduce a design methodology of data-centroid Radial Basis Function neural networks with extended polynomial function. The two underlying design mechanisms of such networks involve K-means clustering method and Particle Swarm Optimization(PSO). The proposed algorithm is based on K-means clustering method for efficient processing of data and the optimization of model was carried out using PSO. In this paper, as the connection weight of RBF neural networks, we are able to use four types of polynomials such as simplified, linear, quadratic, and modified quadratic. Using K-means clustering, the center values of Gaussian function as activation function are selected. And the PSO-based RBF neural networks results in a structurally optimized structure and comes with a higher level of flexibility than the one encountered in the conventional RBF neural networks. The PSO-based design procedure being applied at each node of RBF neural networks leads to the selection of preferred parameters with specific local characteristics (such as the number of input variables, a specific set of input variables, and the distribution constant value in activation function) available within the RBF neural networks. To evaluate the performance of the proposed data-centroid RBF neural network with extended polynomial function, the model is experimented with using the nonlinear process data(2-Dimensional synthetic data and Mackey-Glass time series process data) and the Machine Learning dataset(NOx emission process data in gas turbine plant, Automobile Miles per Gallon(MPG) data, and Boston housing data). For the characteristic analysis of the given entire dataset with non-linearity as well as the efficient construction and evaluation of the dynamic network model, the partition of the given entire dataset distinguishes between two cases of Division I(training dataset and testing dataset) and Division II(training dataset, validation dataset, and testing dataset). A comparative analysis shows that the proposed RBF neural networks produces model with higher accuracy as well as more superb predictive capability than other intelligent models presented previously.

Tracking Detection using Information Granulation-based Fuzzy Radial Basis Function Neural Networks (정보입자기반 퍼지 RBF 뉴럴 네트워크를 이용한 트랙킹 검출)

  • Choi, Jeoung-Nae;Kim, Young-Il;Oh, Sung-Kwun;Kim, Jeong-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.12
    • /
    • pp.2520-2528
    • /
    • 2009
  • In this paper, we proposed tracking detection methodology using information granulation-based fuzzy radial basis function neural networks (IG-FRBFNN). According to IEC 60112, tracking device is manufactured and utilized for experiment. We consider 12 features that can be used to decide whether tracking phenomenon happened or not. These features are considered by signal processing methods such as filtering, Fast Fourier Transform(FFT) and Wavelet. Such some effective features are used as the inputs of the IG-FRBFNN, the tracking phenomenon is confirmed by using the IG-FRBFNN. The learning of the premise and the consequent part of rules in the IG-FRBFNN is carried out by Fuzzy C-Means (FCM) clustering algorithm and weighted least squares method (WLSE), respectively. Also, Hierarchical Fair Competition-based Parallel Genetic Algorithm (HFC-PGA) is exploited to optimize the IG-FRBFNN. Effective features to be selected and the number of fuzzy rules, the order of polynomial of fuzzy rules, the fuzzification coefficient used in FCM are optimized by the HFC-PGA. Tracking inference engine is implemented by using the LabVIEW and loaded into embedded system. We show the superb performance and feasibility of the tracking detection system through some experiments.

An Adaptive Neural Network Control Method for Robot Manipulators

  • Lee, Min-Jung;Choi, Young-Kiu
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2341-2344
    • /
    • 2001
  • In recent years the neural network known as a sort of the intelligent control strategy is used as a powerful tool for designing control system since it has learning ability. But it is difficult for neural network controllers to guarantee the stability of control systems. In this paper we try connecting a radial basis function network to an adaptive control strategy. Radial basis function networks are simpler and easier to handle than multilayer perceptrons. We use the radial basis function network to generate control input signals that are similar to the control inputs of adaptive control using linear reparameterization of the robot manipulator. We adopt the saturation function as an auxiliary controller. This paper also proves mathematically the stability of the control system under the existence of disturbances and modeling errors.

  • PDF