• Title/Summary/Keyword: radial basis function(RBF)

Search Result 245, Processing Time 0.025 seconds

Design of a Time-delay Compensator Using Neural Network In a Tele-operation System (원격 제어 시스템에서의 신경망을 이용한 시간 지연 보상 제어기 설계)

  • Choi, Ho-Jin;Jung, Seul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.4
    • /
    • pp.449-455
    • /
    • 2011
  • In this paper, a time-delay problem of a tele-operated control system is investigated and compensated by neural network. The smith predictor requires an exact system model to deal with a time-delay in the system. To compensate for modeling errors in the configuration of the Smith predictor, a neural network approach is presented. Based on forming the Smith predictor structure, the radial basis function(RBF) neural network estimator is used. Simulation and experimental studies are conducted to show the functionality of the proposed method.

Classification of PVC(Premature Ventricular Contraction) using Radial Basis Function network (Radial Basis Function 네트워크를 이용한 PVC 분류)

  • Lee, J.;Lee, K.J.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.439-442
    • /
    • 1997
  • In our research, we will extract diagnostic parameters by LPC method and wavelet transform. Then, we will design artificial neural network which is based on RBF that can express input features in terms of fuzzy. Because PVC(Premature Ventricular Contraction) has possibility to cause heart attack, the detection of PVC is a very significant problem. To deal with this problem, LPC method which gives different coefficients or different morphologies and wavelet transform which has superior localization nature of time-frequency, are used to extract effective parameters or classification of normal and PVC. Because RBF network can allocate an input feature to the membership degree of each category, total system will be more flexible.

  • PDF

A smooth boundary scheme-based topology optimization for functionally graded structures with discontinuities

  • Thanh T. Banh;Luu G. Nam;Dongkyu Lee
    • Steel and Composite Structures
    • /
    • v.48 no.1
    • /
    • pp.73-88
    • /
    • 2023
  • This paper presents a novel implicit level set method for topology optimization of functionally graded (FG) structures with pre-existing discontinuities (pre-cracks) using radial basis functions (RBF). The mathematical formulation of the optimization problem is developed by incorporating RBF-based nodal densities as design variables and minimizing compliance as the objective function. To accurately capture crack-tip behavior, crack-tip enrichment functions are introduced, and an eXtended Finite Element Method (X-FEM) is employed for analyzing the mechanical response of FG structures with strong discontinuities. The enforcement of boundary conditions is achieved using the Hamilton-Jacobi method. The study provides detailed mathematical expressions for topology optimization of systems with defects using FG materials. Numerical examples are presented to demonstrate the efficiency and reliability of the proposed methodology.

The Adaptive Backstepping Controller of RBF Neural Network Which is Designed on the Basis of the Error (오차를 기반으로한 RBF 신경회로망 적응 백스테핑 제어기 설계)

  • Kim, Hyun Woo;Yoon, Yook Hyun;Jeong, Jin Han;Park, Jahng Hyon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.2
    • /
    • pp.125-131
    • /
    • 2017
  • 2-Axis Pan and Tilt Motion Platform, a complex multivariate non-linear system, may incur any disturbance, thus requiring system controller with robustness against various disturbances. In this study, we designed an adaptive backstepping compensated controller by estimating the disturbance and error using the Radial Basis Function Neural Network (RBF NN). In this process, Uniformly Ultimately Bounded (UUB) was demonstrated via Lyapunov and stability was confirmed. By generating progressive disturbance to the irregular frequency and amplitude changes, it was verified for various environmental disturbances. In addition, by setting the RBF NN input vector to the minimum, the estimated disturbance compensation process was analyzed. Only two input vectors facilitated compensatory function of RBF NN via estimating the modeling and control error values as well as irregular disturbance; the application of the process resulted in improved backstepping controller performance that was confirmed through simulation.

A New Methodology for Software Module Characterization

  • Shin, Miyoung;Nam, Yunseok
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.434-437
    • /
    • 1999
  • The primary aim of this paper is to introduce and illustrate a radial basis function (RBF) modeling approach fur software module characterization, as an alternative to current techniques. The RBF model has been known to provide a rich analytical framework fur a broad class of so-called pattern recognition problems. Especially, it features both nonlinearity and linearity which in general are treated separately by its learning algorithm, leading to offer conceptual and computational advantages. Furthermore, our new modeling methodology fer determining model parameters has a sound mathematical basis and showed very interesting results in terms of model consistency as well as performance.

  • PDF

Identification of Fuzzy-Radial Basis Function Neural Network Based on Mountain Clustering (Mountain Clustering 기반 퍼지 RBF 뉴럴네트워크의 동정)

  • Choi, Jeoung-Nae;Oh, Sung-Kwun;Kim, Hyun-Ki
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.1 no.3
    • /
    • pp.69-76
    • /
    • 2008
  • This paper concerns Fuzzy Radial Basis Function Neural Network (FRBFNN) and automatic rule generation of extraction of the FRBFNN by means of mountain clustering. In the proposed network, the membership functions of the premise part of fuzzy rules do not assume any explicit functional forms such as Gaussian, ellipsoidal, triangular, etc., so its resulting fitness values (degree of membership) directly rely on the computation of the relevant distance between data points. Also, we consider high-order polynomial as the consequent part of fuzzy rules which represent input-output characteristic of sup-space. The number of clusters and the centers of clusters are automatically generated by using mountain clustering method based on the density of data. The centers of cluster which are obtained by using mountain clustering are used to determine a degree of membership and weighted least square estimator (WLSE) is adopted to estimate the coefficients of the consequent polynomial of fuzzy rules. The effectiveness of the proposed model have been investigated and analyzed in detail for the representative nonlinear function.

  • PDF

Self-organizing neuro-tracking of non-stationary manufacturing processes

  • Wang, Gi-Nam;Go, Young-Cheol
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.403-413
    • /
    • 1996
  • Two-phase self-organizing neuro-modeling (SONM). the global SONM and local SONM, is designed for tracking non-stationary manufacturing processes. Radial basis function (RBF) neural network is employed, and self-tuning estimator is also developed for the determination of RBF network parameters on-line. A pattern recognition approach is presented for identifying a correct RBF neural network, which is used for identifying current manufacturing processes. Experimental results showed that the proposed approach is suitable for tracking non-stationary processes.

  • PDF

Communication Channel Equalization Using Adaptive Neural Net (적응 신경망을 이용한 통신 채널 등화)

  • 김정수;권용광;김민수;이대학;이상윤;김재공
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.1037-1040
    • /
    • 1999
  • This paper investigates a RBF(Radial Basis Function) equalizer for channel equalization. RBF network has an identical structure to the optimal Bayesian symbol-decision equalizer solution. Therefore RBF can be employed to implement the Bayesian equalizer. Proposed algorithm of this paper makes channel states estimation to be unncessary, also makes center number which is needed indivisual channel to be minimum. Bayesian Equalizer has the theorical optimum performance. Proposed Equalizer performance is compared with this Baysian equalizer performance.

  • PDF

Mechanical Fault Classification of an Induction Motor using Texture Analysis (질감 분석을 이용한 유도 전동기의 기계적 결함 분류)

  • Jang, Won-Chul;Park, Yong-Hoon;Kang, Myeong-Su;Kim, Jong-Myon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.12
    • /
    • pp.11-19
    • /
    • 2013
  • This paper proposes an algorithm using vibration signals and texture analysis for mechanical fault diagnosis of an induction motor. We analyze characteristics of contrast and pattern of an image converted from vibration signal and extract three texture features using gray-level co-occurrence model(GLCM). Then, the extracted features are used as inputs of a multi-level support vector machine(MLSVM) which utilizes the radial basis function(RBF) kernel function to classify each fault type. In addition, we evaluate the classification performance with varying the parameter from 0.3 to 1.0 for the RBF kernel function of MLSVM, and the proposed algorithm achieved 100% classification accuracy with the parameter of the RBF from 0.3 to 1.0. Moreover, the proposed algorithm achieved about 98% classification accuracy with 15dB and 20dB noise inserted vibration signals.

VAD By Neural Network Under Wireless Communication Systems (Neural Network을 이용한 무선 통신시스템에서의 VAD)

  • Lee Hosun;Kim Sukyung;Park Sung-Kwon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.12C
    • /
    • pp.1262-1267
    • /
    • 2005
  • Elliptical basis function (EBF) neural network works stably under high-level background noise environment and makes the nonlinear processing possible. It can be adapted real time VAD with simple design. This paper introduces VAD implementation using EBF and the experimental results show that EBF VAD outperforms G729 Annex B and RBF neural networks. The best error rates achieved by the EBF networks were improved more than $70\%$ in speech and $50\%$ in silence while that achieved by G.729 Annex B and RBF networks respectively.