• 제목/요약/키워드: radial basis function(RBF)

검색결과 245건 처리시간 0.022초

Interval 제 2 종 퍼지 radial basis function neural network (Interval type-2 fuzzy radial basis function neural network)

  • 최병인;이정훈
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2006년도 추계학술대회 학술발표 논문집 제16권 제2호
    • /
    • pp.19-22
    • /
    • 2006
  • Type-2 fuzzy 이론은 기존의 퍼지 이론보다 패턴의 불확실성에 대한 제어를 더 향상시킬 수 있다. 반면에 계산 량이 커지는 문제점 때문에 본 논문에서는 type-2 fuzzy set 대신에 secondary membership이 interval의 형태를 갖는 interval type-2 fuzzy set을 기존의 radial basis function(RBF) neural network에 적용시킨 interval type-2 fuzzy RBF neural network를 제안한다. 제안한 알고리즘은 interval type-2 fuzzy membership function에 의하여 패턴들의 불확실성을 좀 더 잘 제어하여 기존의 RBF neural network의 성능을 향상시킬 수 있다. 본 논문에서는 제안한 알고리즘의 타당성을 보이기 위하여 여러 데이터 집합에 대한 분류 결과를 보인다.

  • PDF

Radial Basis Function Networks를 이용한 이중 임계값 방식의 음성구간 검출기 (Voice Activity Detection Algorithm base on Radial Basis Function Networks with Dual Threshold)

  • 김홍익;박승권
    • 한국통신학회논문지
    • /
    • 제29권12C호
    • /
    • pp.1660-1668
    • /
    • 2004
  • 본 논문에서는 간단한 구조, 적은 계산량과 안정된 빠른 수렴속도를 가진 RBF (Radial Basis Function) 신경회로망을 이용한 이중 임계값 방식의 음성구간 검출기 알고리즘을 제안하고 시뮬레이션을 통해 유용성을 확인하였다. 음성압축기에 사용되는 CELP (Code-Excited Linear Prediction) 파라미터들을 신경회로망 입력으로 하여 잡음에 강하게 반응하게 하였고, 음성구간 검출기의 성능향상을 위해 음성구간과 침묵구간에서 다른 임계값을 사용하는 이중 임계값 방식을 적용하였다. 실험 결과 이중 임계값을 이용한 RBF 신경망 음성구간 검출기는 G.729 Annex B 음성구간 검출기 보다 우수한 성능을 보였고, 기존의 MLP (Multi Layer Perceptron) 신경회로망을 이용한 음성구간 검출기와 비교하여 음성구간에서는 비슷한 성능을 보였으나 침묵구간에서 25% 정도의 성능향상을 보였다.

비선형, 비정상 시계열 예측을 위한 RBF(Radial Basis Function) 회로망 구조 (RBF Network Structure for Prediction of Non-linear, Non-stationary Time Series)

  • 김상환;이종호
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권2호
    • /
    • pp.168-175
    • /
    • 1999
  • In this paper, a modified RBF(Radial Basis Function) network structure is suggested for the prediction of a time-series with non-linear, non-stationary characteristics. Coventional RBF network predicting time series by using past outputs sense the trajectory of the time series and react when there exists strong relation between input and hidden activation function's RBF center. But this response is highly sensitive to level and trend of time serieses. In order to overcome such dependencies, hidden activation functions are modified to react to the increments of input variable and multiplied by increment(or dectement) for prediction. When the suggested structure is applied to prediction of Macyey-Glass chaotic time series, Lorenz equation, and Rossler equation, improved performances are obtained.

  • PDF

Raised Cosine RBF 신경망을 이용한 무제약 필기체 숫자 인식 (Recognition of Unconstrained Handwritten Digits Using Raised Cosine RBF Neural Networks)

  • 박준근;김상희;박원우
    • 융합신호처리학회논문지
    • /
    • 제3권1호
    • /
    • pp.48-53
    • /
    • 2002
  • 본 논문에서는 무제약 필기체 숫자 인식에 있어서 향상된 RBF(Radial Basis Function) 신경망을 이용한 새로운 접근 방법을 제시하였다. RBF 신경망은 인식률과 인식 속도를 향상시키기 위해 기저 함수로서 Raised Cosine RBF를 사용하였다. Raised Cosine RBF 신경망 분류기의 성능 평가를 위하여 캐나다 몬트리올 Concordia 대학의 무제약 필기체 숫자 데이터베이스를 사용하였고, 실험 결과 98.05%의 인식률을 보였다.

  • PDF

On the Radial Basis Function Networks with the Basis Function of q-Normal Distribution

  • Eccyuya, Kotaro;Tanaka, Masaru
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 ITC-CSCC -1
    • /
    • pp.26-29
    • /
    • 2002
  • Radial Basis Function (RBF) networks is known as efficient method in classification problems and function approximation. The basis function of RBF networks is usual adopted normal distribution like the Gaussian function. The output of the Gaussian function has the maximum at the center and decrease as increase the distance from the center. For learning of neural network, the method treating the limited area of input space is sometimes more useful than the method treating the whole of input space. The q-normal distribution is the set of probability density function include the Gaussian function. In this paper, we introduce the RBF networks with the basis function of q-normal distribution and actually approximate a function using the RBF networks.

  • PDF

방사형 기저 함수 기반 다항식 뉴럴네트워크 설계 (Design of RBF-based Polynomial Neural Network)

  • 김기상;진용하;오성권;김현기
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2009년도 정보 및 제어 심포지움 논문집
    • /
    • pp.261-263
    • /
    • 2009
  • 본 연구에서는 복잡한 비선형 모델링 방법인 RBF 뉴럴 네트워크(Radial Basis Function Neural Network)와 PNN(Polynomial Neural Network)을 접목한 새로운 형태의 Radial Basis Function Polynomial Neural Network(RPNN)를 제안한다. RBF 뉴럴 네트워크는 빠른 학습 시간, 일반화 그리고 단순화의 특징으로 비선형 시스템 모델링 등에 적용되고 있으며, PNN은 생성된 노드들 중에서 우수한 결과값을 가진 노드들을 선택함으로써 모델의 근사화 및 일반화에 탁월한 효과를 가진 비선형 모델링 방법이다. 제안된 RPNN모델의 기본적인 구조는 PNN의 형태를 이루고 있으며, 각각의 노드는 RBF 뉴럴 네트워크로 구성하였다. 사용된 RBF 뉴럴 네트워크에서의 커널 함수로는 FCM 클러스터링을 사용하였으며, 각 노드의 후반부는 다항식 구조로 표현하였다. 또한 각 노드의 후반부 파라미터들은 최소자승법을 이용하여 최적화 하였다. 제안한 모델의 적용 및 유용성을 비교 평가하기 위하여 비선형 데이터를 이용하여 그 우수성을 보인다.

  • PDF

Radial Basis Function을 사용한 격자 변형에 대한 연구 (A STUDY ON A GRID DEFORMATION USING RADIAL BASIS FUNCTION)

  • 제소영;정성기;양영록;명노신;조태환
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 춘계학술대회논문집
    • /
    • pp.121-124
    • /
    • 2009
  • A moving mesh system is one of the critical parts in a computational fluid dynamics analysis. In this study, the RBF(Radial Basis Function) which shows better performance than hybrid meshes was developed to obtain the deformed grid. The RBF method can handle large mesh deformations caused by translations, rotations and deformations, both for 2D and 3D meshes. Another advantage of the method is that it can handle both structured and unstructured grids with ease. The method uses a volume spline technique to compute the deformation of block vertices and block edges, and deformed shape.

  • PDF

RBF망을 이용한 소프트웨어 유지보수 비용 추정 (Software Maintenance Cost Estimation using RBF Network)

  • 박주석;정기원
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권5호
    • /
    • pp.555-562
    • /
    • 2004
  • 소프트웨어 회사들은 새로운 개발보다는 기존 프로젝트의 유지보수와 성능향상 프로젝트를 보다 많이 수행한다. 기존의 비용 추정 모델들은 유지보수 프로젝트들에 적용할 수 있지만, 유지보수 분야에 적용시키기 위해서는 변경이 필요하다. 본 논문은 개발 프로젝트와 유지보수 프로젝트의 기능점수 계산방법을 분류하고 ISBSG의 밴치마킹 자료를 회귀 분석한 결과를 토대로 유지보수 프로젝트의 비용을 측정할 수 있는 방법을 제안하였다. 먼저, ISBSG 자료를 소프트웨어 비용에 영향을 미치는 요소인 프로그램 추가, 변경과 삭제 3가지 요소의 8가지 중에서 실제 유지보수가 나타나는 4가지 그룹으로 분류하였다. 그리고, 그룹별로 통계적 모델과 RBF 망(Radial Basis Function Network)을 이용한 모델을 개발하여 각각의 성능을 분석 평가한 결과 RBF 망이 통계적 모델보다 좋은 성능을 보였다.

다항식기반 RBF 신경회로망을 이용한 2-클래스 문제에 대한 패턴분류 (Pattern Classification of Two Classes' Problem Using Polynomial based Radial Basis Function Neural Networks)

  • 김길성;박병준;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.451-452
    • /
    • 2007
  • 본 논문에서는 다항식 기반 Radial Basis Function(RBF)신경회로망(Polynomial based Radial Basis Function Neural Networks)을 설계하고 이를 2-클래스 패턴 분류 문제에 응용하여 그 성능을 분석한다. 제안된 다항식기반 RBF 신경회로망은 입력층, 은닉층, 출력 층으로 이루어진다. 입력층은 입력 벡터의 값들을 은닉 층으로 전달하는 기능을 수행하고 은닉층은 Fuzzy c-means 클러스터링을 통하여 뉴런의 출력 값으로 내보낸다. 은닉층과 출력층사이의 연결가중치는 상수, 선형식 또는 이차식으로 이루어지며 경사 하강법에 의해 학습된다. Networks의 최종 출력은 연결가중치와 은닉층 출력의 곱에 의해 퍼지추론의 결과로서 얻어진다. 제안된 다항식기반 RBF 신경회로망은 각기 다른 4종류의 2-클래스 분류 문제에 적용 및 평가되어 분류기로써의 성능을 분석한다.

  • PDF

An Identification Technique Based on Adaptive Radial Basis Function Network for an Electronic Odor Sensing System

  • Byun, Hyung-Gi
    • 센서학회지
    • /
    • 제20권3호
    • /
    • pp.151-155
    • /
    • 2011
  • A variety of pattern recognition algorithms including neural networks may be applicable to the identification of odors. In this paper, an identification technique for an electronic odor sensing system applicable to wound state monitoring is presented. The performance of the radial basis function(RBF) network is highly dependent on the choice of centers and widths in basis function. For the fine tuning of centers and widths, those parameters are initialized by an ill-conditioned genetic fuzzy c-means algorithm, and the distribution of input patterns in the very first stage, the stochastic gradient(SG), is adapted. The adaptive RBF network with singular value decomposition(SVD), which provides additional adaptation capabilities to the RBF network, is used to process data from array-based gas sensors for early detection of wound infection in burn patients. The primary results indicate that infected patients can be distinguished from uninfected patients.