• 제목/요약/키워드: radial

Search Result 5,318, Processing Time 0.035 seconds

A Study on the Forming Characteristics of Radial Extrusions Combined with Forward Extrusion (전방압출과 연계된 레이디얼압출의 성형특성에 관한 연구)

  • 장용석;황병복
    • Transactions of Materials Processing
    • /
    • v.9 no.3
    • /
    • pp.242-248
    • /
    • 2000
  • This paper is concerned with the family of parts that generally feature a central hub with radial protrusions. Radial Extrusion is usually used in order to produce complex parts, which is combined with upsetting and/or forward and backward extrusion. Typical parts that fall into this category include cross pieces for universal joints, key-shaft type parts, tube fittings, and differential gears. In this paper, the forming characteristics of radial extrusion combined with forward extrusion is investigated by comparing the punch and mandrel loads. The design factors during radial extrusion combined with forward extrusion are applied to the simulation to see how much those factors have effect on the forming loads. The rigid-plastic FEM is applied to the simulation.

  • PDF

Analysis of radial error motion in a small-sized and high-speed spindle (소형-고속 스핀들의 반경방향 오차분석 방법)

  • 이응삼;이재하;양승한
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.604-608
    • /
    • 2004
  • In this paper, an efficient method is proposed to analyze the radial error of a miniaturized-high speed spindle system. Initially, a device is constructed for measuring the radial error motion using capacitance sensors. The capacitance sensors are placed perpendicular to the axis of the shaft and at 90o to each other. The spindle is rotated at high speed and the profile of the spindle is recorded. An algorithm is developed for analyzing the spindle data and determining the radial error of spindle. The present algorithm uses homogeneous transform matrix (HTM) method and iterative process for determining the radial error. The analysis procedure is performed for different speeds of the spindle. The data obtained from the present system and the results of evaluation are also presented in this paper. It is observed that this method is effective in determining and analyzing the spindle errors for high speed miniaturized spindle.

  • PDF

A Study of PPG Wave and Pulse Measurement on Radial Artery Using Digital Potentiometer and Exponentially Weighted Moving Average Filter (디지털 가변저항과 지수가중 이동평균필터를 통한 요골동맥에서의 PPG 파형과 맥박 측정에 관한 연구)

  • Jung, In-Bok;Kim, Kyung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.7
    • /
    • pp.962-967
    • /
    • 2014
  • In this paper, through a digital potentiometer and exponentially weighted moving average filter, pulse and PPG waveform measurable device was fabricated in radial artery. If this device is not proper about signal size in analog part, MCU can judge easily by adjusted amplification through digital potentiometer, using exponentially weighted moving average filter is able to filter out more clear value of ADC. I presumed pulse rate as value of measuring time between point of maximum contraction from sensing signal in radial artery of wrist. Therefore, this means can measure stable pulse rate and PPG waveform, finger as well as radial artery, whether signal size of each person is different finger as well as radial artery.

Design of Radial Basis Function with the Aid of Fuzzy KNN and Conditional FCM (퍼지 kNN과 Conditional FCM을 이용한 퍼지 RBF의 설계)

  • Roh, Seok-Beon;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.6
    • /
    • pp.1223-1229
    • /
    • 2009
  • The performance of Radial Basis Function Neural Networks depends on setting up the Radial Basis Functions over the input space which are the important design procedure of Radial Basis Function Neural Networks. The existing method to initialize the location of the radial basis functions over the input space is to use the conditional fuzzy C-means clustering. However, the researchers which are interested in the conditional fuzzy C-means clustering cannot get as good modeling performance as they expect because the conditional fuzzy C-means clustering cannot project the information which is extracted over the output space into the input space. To compensate the above mentioned drawback of the conditional fuzzy C-means clustering, we apply a fuzzy K-nearest neighbors approach to project the auxiliary information defined over the output space into the input space without lose of the information.

Forming Characteristics of Radial Extrusions (레이디얼 압출의 성형특성)

  • Lee Soo-Hyung;Hwang Beong-Bok
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.05a
    • /
    • pp.75-78
    • /
    • 1999
  • This paper is concerned with the family of parts that generally feature a central hub with radial protrusions. Typical parts that fall into this category include cross Pieces for universal joints, tube fittings, and differential gears. As opposed to conventional forward and backward extrusion, in which the material flows in a direction parallel to that of the punch or die motion, the material flows perpendicular to the punch motion in radial extrusion. In this study, the forming characteristics of radial extrusion will be considered by comparing the forces, shapes etc. The design factors during radial extrusion are investigated by the rigid-plastic FEM simulation.

  • PDF

Radial Vibration Analysis of Cylindrical Piezoelectric Transducers Considering Anisotrpy (이방성을 고려한 원통형 압전 변환기의 반경방향 진동 특성 해석)

  • Lee, Jung-Gu;Kim, Jin-Oh
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.3
    • /
    • pp.274-280
    • /
    • 2004
  • This paper presents the analysis fur the radial vibration characteristics of cylindrical piezoelectric transducers. Taking into account the piezoelectric anisotropy, the differential equations of piezoelectric radial motion have been derived in terms of radial displacement and electric potential. Applying mechanical and electric boundary conditions has yielded a characteristic equation for radial vibration. Numerical analysis also has been carried out by using the finite element method. Theoretical calculations of the fundamental natural frequency have been compared with the experimental observations for transducers of several sizes. Comparison with the previous report of theoretical analysis simplifying the piezoelectric anisotropy into isotropy concludes that isotropic analysis is a reasonable process to predict the vibration characteristics of piezoelectric transducers.

A Study on the 60 GHz Band Radial Line Slot Array Antenna Fed by a Rectangular Waveguide (60 GHz 대역용 도파관 급전 Radial Line Slot Array 안테나에 관한 연구)

  • 김용훈;채희덕;이중원;박종국;김성철;김성철
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.3
    • /
    • pp.257-262
    • /
    • 2002
  • A single-layered radial line slot array (SL-RLSA) antenna etched on a substrate and fad by a rectangular waveguide is presented in the 60 ㎓ band. The design curves are obtained by an efficient electromagnetic coupling analysis using Ewald Sum technique and Shanks transformation. The antenna has rectangular waveguide feed structure using a rectangular waveguide-to-radial line transition. The prototype antenna of 10 cm-diameter was tested and the gain of 31 ㏈i and the efficiency of 38% were measured at 60 ㎓.

New Evaluation and Test of Sidewall's Rotational Stiffness of Radial Tire

  • Kim Young-Woo;Kim Yong-Sung
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.748-758
    • /
    • 2006
  • In this paper, we have revisited the estimation of the rotational stiffness of sidewall of radial tire and have suggested a new method for evaluation of the rotational stiffness. Since thicknesses, and volume fractions of the constituents of sidewall are varied depending on radial position, the equivalent shear modulus of the sidewall also depends on radial position. For the estimation of rotational stiffness of sidewall's rubber, we have divided its cross-section into sufficient numbers of small parts and have calculated the equivalent shear modulus of each part of sidewall. Using the shear moduli of divided parts, we have obtained the rotational stiffness by employing in-plane shear deformation theory. This method is expected to be a useful tool in tire design since it relates such basic variables to the global stillness of tire. Applying the calculation method to a radial tire of P205/60R15, we have compared its rotational stiffness with experimental one.

Groundwater Productivity and Rehabilitation of Radial Collector Wells for Agriculture near Okseong Underground Dam

  • Jeon, Hang-Tak;Hamm, Se-Yeong;Hong, Soun-Ouk;Lee, Sang Yong;Kim, Hyoung-Soo
    • Journal of the Korean earth science society
    • /
    • v.41 no.4
    • /
    • pp.381-390
    • /
    • 2020
  • When a radial collector well is installed and operated for agricultural purposes, negative impacts may be observed over time due to the clogging of horizontal arms, such as reduced groundwater discharge and water quality deterioration. When radial collector well No. 2 was rehabilitated using the high-pressure impulse generation technique, the specific capacity and transmissivity were increased by 43.1 and 100.6%, respectively. In contrast, according to air surging, the specific capacity and transmissivity increased by 33.8 and 85.8%, respectively, compared to the initial rate before rehabilitation. During the operation of radial collector wells since construction, the time of well rehabilitation can be effectively determined by continuously monitoring the groundwater level and pumping rate of the radial collector wells, thereby preventing a decrease in productivity.

Analysis of Radial Force on a Permanent Magnet Synchronous Motor Caused by Dimensional Variation (치수적 결함에 따른 PMSM의 법선방향 힘의 변화에 관한 연구)

  • Lee, Chee-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.11
    • /
    • pp.1990-1995
    • /
    • 2010
  • Main reasons for causing vibration in a permanent magnet synchronous motor (PMSM) are torque ripple and radial force harmonics, and hence, both of them are undesirable in high-precision machine tools and accurate motion-control actuators. Recent research on radial force is the prediction of major vibration frequencies and modes in terms of motor design such as different winding types and a fractional slot number per pole in the stator. Also, proper phase current has been investigated for minimizing radial force harmonics. During the previous studies, all the motors are assumed to be ideally built up in terms of mechanical dimensions, but it is impossible due to dimensional variation within or outside tolerance in production. Therefore, in this paper, the effect of several key factors on radial force is examined and compared regarding manufacturing imperfection.