Classification of radar signals in the field of electronic warfare is a problem of discriminating threat types by analyzing enemy threat radar signals such as aircraft, radar, and missile received through electronic warfare equipment. Recent radar systems have adopted a variety of modulation schemes that are different from those used in conventional systems, and are often difficult to analyze using existing algorithms. Also, it is necessary to design a robust algorithm for the signal received in the real environment due to the environmental influence and the measurement error due to the characteristics of the hardware. In this paper, we propose a radar signal classification method which are not affected by radar signal modulation methods and noise generation by using deep learning techniques.
In this paper, ground penetrating radar (GPR), which has the capability to detect non metal and plastic mines, is proposed to detect and discriminate antipersonnel (AP) landmines. The time domain GPR - Impulse radar and frequency domain GPR - SFCW (Stepped Frequency Continuous Wave) radar is utilized for metal and non-metal landmine detection and its performance is investigated. Since signal processing is vital for target reorganization and clutter rejection, we implemented the MUSIC (Multiple Signal Classification) algorithm for the signal processing of SFCW radar data and SAR (Synthetic Aperture Radar) processing method for the signal processing of Impulse radar data.
Radar target identification can be achieved by using various radar signatures, such as one-dimensional(1-D) range profile, 2-D radar images, and 1-D or 2-D scattering centers on a target. In this letter, five 1-D scattering center extraction methods are discussed - TLS(Total Least Square)-Prony, Fast Root-MUSIC (Multiple Signal Classification), Matrix-Pencil, GEESE(GEneralized Eigenvalues utilizing Signal-subspace Eigenvalues), TLS-ESPRIT(Total Least Squares - Estimation of Signal Parameters via Rotational Invariance Technique), These methods are compared in the context of estimation accuracy as well as a computational efficiency using a noisy data. Finally these methods are applied to the target classification experiment with the measured data in the POSTECH compact range facility.
In electronic warfare(EW), low probability of intercept(LPI) radar signal is a survival technique. Accordingly, identification techniques of the LPI radar waveform have became significant recently. In this paper, classification and extracting parameters techniques for 7 intrapulse modulated radar signals are introduced. We propose a technique of classifying intrapulse modulated radar signals using Convolutional Neural Network(CNN). The time-frequency image(TFI) obtained from Choi-William Distribution(CWD) is used as the input of CNN without extracting the extra feature of each intrapulse modulated radar signals. In addition a method to extract the intrapulse radar modulation parameters using binary image processing is introduced. We demonstrate the performance of the proposed intrapulse radar waveform identification system. Simulation results show that the classification system achieves a overall correct classification success rate of 90 % or better at SNR = -6 dB and the parameter extraction system has an overall error of less than 10 % at SNR of less than -4 dB.
이 논문에서는 수신된 레이다 신호의 특징 파라미터 데이터에 기계학습 방법을 적용하여 위협 형태에 따라 레이다 신호를 분류하는 방법을 제시한다. 현재 군에서는 위협 신호를 파악하기 위해 특징 파라미터값들과 위협 형태의 대응관계를 나타내는 라이브러리를 이용한다. 라이브러리를 이용한 방법은 새로운 위협이나 기존 라이브러리에 존재하지 않는 위협 형태에 대해서 레이다 신호를 분류하기 어렵고 위협 형태를 파악하는데 문제가 있다. 이 논문에서는 라이브러리 없이 특징 파라미터 데이터만을 이용하여 위협 형태에 따라 레이다 신호를 분류하는 방법을 제안하고자 한다. 분류기로는 CNN(convolutional neural network)을 사용하며, 기계학습을 적용하여 훈련시킨다. 제안 방법은 라이브러리를 사용하지 않음으로써 새로운 위협 신호나 기존의 라이브러리에 존재하지 않는 위협 신호도 적응적으로 분류할 수 있다.
이 논문에서는 수신된 레이더 신호로부터 추출한 파라미터 데이터에 기계학습을 적용하여 그 레이더에 대응하기 위한 재밍기법에 따라 레이더 신호를 분류하는 방법을 제안한다. 현재 군에서는 대부분 사전 조사에 의해 구축된 레이더 신호 파라미터에 대한 라이브러리를 기반으로 위협 형태에 따라 레이더 신호를 분류한다. 그러나 레이더 기술은 계속적으로 발전되고 다양해지고 있기 때문에 새로운 위협이나 기존의 라이브러리에 존재하지 않는 위협형태에 대해서 이 방법을 적용하는 경우 적절하게 신호를 분류할 수 없고 따라서 적합한 재밍기법을 선택하는데 제한이 따른다. 따라서 기존의 위협 라이브러리를 이용한 방식과 다르게 추정한 레이더 신호의 파라미터 데이터만을 이용하여 최적의 재밍기법을 선택할 수 있도록 신호를 분류하는 기술이 필요하다. 이 연구에서는 새로운 위협 신호의 형태에 대응하기 위한 방법으로 기계학습을 기반으로 한 방법을 제시한다. 제안한 방법은 기존에 축적된 라이브러리 데이터를 이용하여 은닉 마르코프(Markov) 모델과 신경망으로 구성된 분류기를 학습시킴으로써 새로운 위협 신호에 대해 적절한 재밍기법을 대응시킬 수 있도록 신호를 분류한다.
ISAR(Inverse Synthetic Aperture Radar) 영상은 표적에 대한 RCS(Radar Cross Section)를 2차원 공간에 표현하며, 표적구분에 이용될 수 있다. 2차원 IFFT(Inverse fast Fourier Transform)를 이용하여 쉽고 빠르게 ISAR 영상을 만들 수 있다. 하지만 IFFT를 이용하여 만든 ISAR 영상은 측정된 주파수 대역 폭과 각도 영역이 작아질 경우 해상도가 떨어지게 된다. 이를 해결하기 위해 AR(Auto Regressive), MUSIC(Multiple SIgnal Classification), Modified MUSIC과 같은 고해상도 스펙트럼 예측 기법을 이용하여 주파수 대역 폭과 각도 영역이 작아도 높은 해상도의 ISAR 영상을 만들 수 있다. 본 논문에서는 IFFT, AR, MUSIC, Modified MUSIC 기법을 적용하여 만든 ISAR 영상을 이용하여 표적 구분에 이용하고, 표적 구분에 적절한 ISAR 영상을 얻기 위한 고해상도 기법을 연구한다. 그리고 표적 구분 결과를 보여준다.
기존에 중 대형 선박용 레이더로서 널리 사용되는 펄스 레이더는 주로 원거리에 위치하는 다른 선박이나 장애물을 감지하기 위한 용도로 사용된다. 이러한 펄스 레이더는 높은 출력을 요구하며 장착 및 유지비용이 많이 들기 때문에 소형용 선박에는 장착하지 못하고 있다. 따라서 그 대안으로 제시되는 것이 FMCW(frequency modulated continuous wave) 레이더이다. FMCW 레이더 시스템은 낮은 전력으로도 운용이 가능하며 비교적 가까운 곳에 있는 물체에 대한 거리 분해능이 좋기 때문에 소형 선박용 레이더에 적합하다. 기존에 제안된 소형 선박용 FMCW 레이더 시스템은 단일 수신 안테나를 사용하기 때문에 한 번 수신된 신호를 가지고는 특정 방향에 존재하는 선박의 위치 정보만을 추출할 뿐, 동시에 여러 선박의 위치 정보를 파악하는 것은 힘들다. 따라서 본 논문에서는 위상 배열 안테나를 사용하여 받은 FMCW 레이더 신호에 MUSIC(multiple signal classification) 알고리즘을 적용함으로써, 여러 대의 선박의 위치를 동시에 추정할 수 있는 방법을 제안한다. 또한, 디지털 빔 형성 기법을 기존 MUSIC 알고리즘에 결함함으로써 각도 분해능을 향상시키고자 한다.
본 연구는 24GHz 측방설치 차량감지용 레이다를 개발하였다. 다차선에 존재하는 차량들의 속도 측정 및 차량 분류를 위해 24GHz 송수신 모듈을 개발하였고, 신호처리부에 새로운 신호처리 알고리즘을 적용하였다. 본 논문은 고정된 FMCW (Frequency Modulated Continuous Wave) 레이다 모듈로써, 동작원리 이론과 알고리즘에 대해 측정된 데이터를 나타내었다. 측정된 결과는, 가변 threshold 추출 방법을 이용하여 한 차선의 차량 속도에 대해 95%의 정확성과 두 차선에 대해서는 90%의 정확성을 보였다. 또한, 차량의 분류는 소형, 중형, 대형의 3종 분류로 약 89%의 정확성을 나타내었다.
차량용 레이더 시스템에 대한 수요가 증가함에 따라서, 상호 간섭 문제는 차량 안전을 보장하기 위해 해결해야 할 결정적인 이슈가 되었다. Frequency modulated continuous wave(FMCW) 레이더의 상호 간섭은 잡음 전력 증가의 형태로 나타나며, 이는 간섭체로 인한 타겟 검출의 실패로 이어진다. 기존의 FMCW 레이더의 주파수 추정을 위하여 사용되는 fast Fourier transform (FFT) 기법은 차량용 레이더 간섭 환경에서는 취약하다. 이러한 단점을 극복하기 위하여, 본 연구에서는 간섭환경에서 사용하기 위한 고해상도 주파수 추정 기법을 제안한다. 제안된 알고리즘의 성능을 입증하기 위하여, 77GHz 전방 감시용FMCW 레이더 시스템을 도입하였다. 제안된 기법은 간섭환경에서도 정확하게 주파수를 추정할 수 있는 multiple signal classification, estimation of signal parameters via rotational invariance techniques과 같은 고해상도 알고리즘을 이용한다. 실험결과로부터 제안된 알고리즘이 기존의 FFT 알고리즘에 비해 신호 대 간섭비 측면에서 14 dB 이상의 마진을 가짐을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.