Potential maximum soil moisture retention (S) is a dominant parameter in the Soil Conservation Service (SCS; now called the USDA Natural Resources Conservation Service (NRCS)) runoff Curve Number (CN) method commonly used in hydrologic modeling for event-based flood forecasting (SCS, 1985). Physically, S represents the depth [L] soil could store water through infiltration. The depth of soil moisture retention will vary depending on infiltration from previous rainfall events; an adjustment is usually made using a factor for Antecedent Moisture Conditions (AMCs). Application of the method for continuous simulation of multiple storms has typically involved updating the AMC and S. However, these studies have focused on a time step where S is allowed to vary at daily or longer time scales. While useful for hydrologic events that span multiple days, this temporal resolution is too coarse for short-term applications such as flash flood events. In this study, an approach for deriving a time-variable potential maximum soil moisture retention curve (S-curve) at hourly time-scales is presented. The methodology is applied to the Napa River basin, California. Rainfall events from 2011 to 2012 are used for estimating the event-based S. As a result, we derive an S-curve which is classified into three sections depending on the recovery rate of S for soil moisture conditions ranging from 1) dry, 2) transitional from dry to wet, and 3) wet. The first section is described as gradually increasing recovering S (0.97 mm/hr or 23.28 mm/day), the second section is described as steeply recovering S (2.11 mm/hr or 50.64 mm/day) and the third section is described as gradually decreasing recovery (0.34 mm/hr or 8.16 mm/day). Using the S-curve, we can estimate the hourly change of soil moisture content according to the time duration after rainfall cessation, which is then used to estimate direct runoff for a continuous simulation for flood forecasting.
기상레이더는 강우량을 바로 추정하지 못하는 특성으로 인해 정량적 강우산출 과정 중에 다양한 원인으로 인해 불확실성 발생 요소가 존재하나 이를 정량화하고 저감하는데 많은 어려움이 있다. 원인을 살펴보면, 첫째, 기상레이더의 관측에서부터 정량적 강우량 추정까지 일련의 과정에 대한 포괄적으로 불확실성 정량화와 분석이 이루어지지 못하며, 둘째, 전체 불확실성이 어느 정도 되는지 제시하지 못하므로 각 단계별 불확실성이 전체 불확실성 대비 어느 정도 비율이 되는지 제시하지 못한다. 마지막으로 기존 연구들은 불확실성을 줄이고자 여러 방법을 사용하고 있으나 어느 정도 효용성이 있는지 불확실성 측면에서 제시하지 못하고 있다. 따라서 본 연구에서는 Maximum Entropy(ME)와 Uncertainty Delta Method(UMD)를 이용한 접근방법을 제안하여 기상레이더를 활용하여 정량적 강우량을 추정하는 일련의 과정에서 단계별로 불확실성이 어떻게 전파되는지 추정하였다. 본 연구에서는 한반도 전역을 대상으로 2012년 여름철(6~8월)에 발생한 18개 강우사례를 이용하여 품질관리(Open Radar Product Generator 품질관리 알고리즘, fuzzy 알고리즘), 강우추정(Window Probability Matching Method, Marshall-Palmer 관계식), 후처리보정(Local Gauge Correction 기법, Gauge to Radar ratio 기법)단계만을 수행하였으며, 이 결과를 바탕으로 기상레이더 정량적 강우추정 단계별 불확실성을 정량화하였다. 정량화결과, 최종적으로 관측단계의 불확실성보다 최종 불확실성이 줄어들었으나, 강우추정 단계에서 불확실성이 증가하는 것으로 나타났다. 이는 어떤 강우추정식을 적용하느냐에 따라 레이더 강우추정결과가 매우 달라질 수 있음을 의미한다. 따라서 본 연구에서 제시한 불확실성 정량화 방법을 통하여 첫째, 전체 및 단계별 불확실성을 정량화할 수 있고, 둘째, 최종 불확실성 대비 각 단계별 불확실성을 비율을 제시할 수 있으며, 마지막으로 수행단계별로 불확실성 전파과정을 파악할 수 있다. 이는 향후 정량적 레이더 강우추정 과정에 있어서 불확실성을 발생시키는 주요 원인파악과 이에 대한 집중적인 투자를 가능하게 한다. 이러한 과정을 통하여 보다 정확한 정량적 레이더 강우추정이 가능할 것으로 판단된다.
While it is important to obtain the accurate information on snowfall data due to the increase in damage caused by the heavy snowfall in the winter season, it is not easy to observe the snowfall quantitatively. Recently, snow measurements using a weighing precipitation gauge have been carried out, but there is a problem that high snowfall intensity results in low accuracy. Also, the observed snowfall data are sensitive depending on wind speed, temperature, and humidity. In this study, a new process of quality control for snow water equivalent (SWE) data of the weighing precipitation gauge were proposed to cover the low accuracy of snow data and maximize the data utilization. Snowfall data (SWE) observed by Pluvio, Parsivel, snow-depth meter using laser or ultrasonic, and rainfall gauge in Cloud Physics Observation Site (CPOS) were compared and analyzed. Applying the QC algorithm including the use of number of hydrometeor particles as reference, the increased SWE per the unit time was determined and the data noise was removed and marked by flag. The SWE data converted by the number concentration of hydrometeor particles are tested as a method to restore the QC-removed data, and show good agreement with those of the weighing precipitation gauge, though requiring more case studies. The three events data for heavy snowfall disaster in Pyeongchang area was analyzed. The SWE data with improved quality was showed a good correlation with the eye-measured data ($R^2$ > 0.73).
최근 국지성 집중호우 및 돌발홍수와 같은 급격한 기상변화로 인한 기상재해의 발생빈도가 증가함에 따라 기존 지상 기상관측소로부터 얻어지는 직접탐측 자료보다는 기상레이더와 위성영상 등 원격탐측 자료를 사용한 수문분야의 연구가 활발하게 진행되고 있다. 기상레이더는 넓은 지역에 걸쳐 실시간으로 강수현상 감시가 가능하며 지상우량계로는 파악이 불가능한 미계측 유역을 통과하는 국지적인 호우현상이나 강우장의 이동 및 변화의 파악도 빠른 시간에 가능한 장점이 있다. 본 연구는 기상레이더 공간적 분포와 지상관측소(AWS 및 ASOS) 자료를 연계한 통계적 레이더 강수량 추정(Quantitative Precipitation Estimation, QPE)과 레이더 강수장을 직접 추적하는 강수장 예측(Quantitative Precipitation Forecast, QPF)를 연계한 해석방안을 수립하였으며, 모형 적용과정은 다음과 같다. 첫째, 강우장의 공간적인 이동을 고려하기 위해 강우장으로 부터 이류(advection)패턴을 추출하여 각 강우세포가 가지는 이동방향 및 이동속도를 고려한 강우장 추적기법을 통하여 2시간의 선행시간을 가지는 강우장을 예측하고자 한다. 둘째, 과거 기상레이더 이미지와 지상관측소의 강수 특성을 파악한 후 앞서 예측된 레이더강우장의 형태와 가장 유사한 과거 레이더강우장과 동일 시간대에 지상관측소 강수시계열을 시나리오 형태로 구축한다. 본 연구를 통하여 개발된 기상레이더 영상 이미지 상관분석 기법을 활용한 초단기강우예측은 집중호우시 홍수 예 경보를 위한 수문모형의 입력자료로 활용이 가능하다. 즉, 수문모형과 연계한 고해상도 단기홍수 예측기술 적용이 가능할 것으로 판단되며, 향후 실시간 재해 예 경보에 활용성을 평가하고자 한다.
최근 기후변화의 영향으로 호우의 발생빈도가 증가하고 있는 추세이며, 도시지역의 호우는 돌발적이고 국지적인 특성을 가지고 있어 인명과 재산피해 역시 증가하고 있으며, 급격한 도시화로 인한 구조적으로 홍수에 취약한 실정이다. 국지성 도시호우는 저층(1 km 내외)에서 형성되는 강우가 지배적이며, 기존의 대형레이더는 높은 산 정상에 설치되어 1.5 km 이상의 강우관측을 중심으로 운영됨에 따라 저층강우의 탐지 및 변동성 관측에 취약하여, 이에 대형 레이더에서 뿐만 아니라 도시단위의 국지성 호우관측에 대응할 수 있는 소형 레이더 기반 고정밀 강우관측 마련 및 운영 기술이 필요하다. 현재 K-water는 부산 에코델타 스마트시티에 도시 물재해 플랫폼 구현의 일환으로 돌발강우사전 탐지 및 도시의 신속·정확한 강우 관측을 위하여 높은 시공간 해상도를 제공하는 이중편파X 밴드 소형 강우레이더를 설치하고, 효율적 운용을 위해 각 고도각에서의 빔 차폐율을 확인하고 이를 고려한 최적 관측전략을 수립하였다. 또한 Z-Phi 방법을 이용한 반사도 감쇠 보정 기술을 개발하였으며, 강우 추정을 위해 하이브리드 고도면 합성 기법(HSR) 기법을 적용하고 검증하였다. 이후 소형 레이더의 정량적 추정강수를 이용하여 강우예측 정보를 생산하기 위해 이류모델을 적용하고, 비슬산과 소형 합성 레이더 추정강수로 선행 10분에서 180분까지 예측할 수 있도록 개발하였다. 또한, 지상강우관측 자료와의 정확도 비교 평가를 수행하고, 행정구역 및 표준유역의 예측 평균강우량을 생산하여 부산 에코델타 스마트시티 도시 물재해 통합관리 시스템과 연계운영을 위한 후속 과업을 수행중에 있다.
본 연구에서는 레이더 자료의 수문학적 적용성에 대한 정확도를 개선하고자 기상현업에서 운영하고 있는 관악산 도플러 레이더 자료를 활용하여 POD(Probability of Detection) 분석을 통해 레이더 오자료를 제거하고, 편차 보정기법을 적용하여 레이더 추정강수의 정확도를 개선시켜 이들의 수문학적 적용성을 검토하였다. 이를 위해 다양한 관측 고도각 별로 POD 분석을 수행한 결과 낮은 확률의 POD($p_l$)와 높은 확률의 POD($p_h $)의 범위가 변화하고, 레이더로부터 약 150 km 이상 떨어진 지역에서는 $1.95^{\circ}$ 이상의 고도각에서 탐지한 레이더 에코가 강수 추정에 유용하지 않음을 알 수 있었다. 또한 소양강유역을 대상으로 관측 강우량보다 과소추정되는 Marshall-Palmer 관계식의 레이더 추정강수를 편차 보정기법으로 실시간으로 보정하여 그 정확도를 향상시켰다. 보정된 레이더 추정강수를 HEC-1에 적용하여 유량해석을 수행한 결과, 보정된 레이더 추정 강수를 이용한 모의치와 관측유량사이에 매우 높은 상관성을 보이고 있음을 알 수 있었다. 따라서 편차 보정기법을 통해 보정된 레이더 강수는 수문학적 분석을 위한 입력자료로 유용하게 사용될 수 있을 것으로 판단된다.
본 연구에서는 레이더 강수를 산정하는 기법을 비교.분석하고자 하였다. 레이더 강수산정기법의 비교는 레이더 반사도를 강우강도로 변환시키는 두가지 Z-R 관계식 산정방법을 기준으로 구분하여 수행하였다. Z-R 관계식 산정방법 중 첫번째는 지상강우계와 대응되는 레이더 격자 사이의 관계를 통해서 Z-R 관계식을 산출하여 레이더 강수를 산정하는 Least-Square Fitting 방법이고, 두번째 방법은 강우량계에서 관측된 강우량과 이에 근접한 영역에서 얻은 레이더 반사도 자료 각각의 확률밀도함수를 대응시켜 Z-R 관계식을 산출하는 WPMM(Window Probability Matching Method)을 적용하는 방법이다. 이 두 방법의 비교를 위해 2003년 6월에서 8월사이의 두 강우사상을 선택하여 Z-R 관계식을 산정하였으며, 산정된 Z-R 관계식으로 추정된 레이더 강수의 기상학적 검증을 통해 정성적.정량적으로 검토하였다. 한반도 전역에 대하여 산정된 레이더 추정강수를 검토한 결과 대체적으로 정확도 및 상관성 측면에서 WPMM 방법이 Least-Square Fitting 방법보다 정확한 것으로 나타났다. 또한, 도시 유역의 홍수예경보에 적합한 레이더 강수산정기법을 파악하고자 중랑천 유역의 레이더 강수를 수문학적으로 분석한 결과 WPMM 방법이 보다 유효한 것으로 검토되었다.
우리나라의 경우 자연 재해로 인한 피해를 감소시키기 위해 첨단 레이더 관측시스템을 설치 및 운영하고 있으며 활용도 또한 증가하고 있어 기상재해를 대비한 정확하고 용이한 레이더 강우량 추정은 필수적 요소라 하겠다. 강우량 추정은 대기 중의 강우 입자들로부터 반사된 전파의 세기 즉 레이더의 반사도 자료와 강우와의 관계를 이용하여 강우량을 산출하며 가장 보편적으로 Marshall and Palmer (1948)에 의해 연구된 Z-R 관계식을 이용하여 강우량을 추정하고 있다. 기존의 레이더 강우량 추정시 사용되는 보정 방법인 G/R (우량계/레이더) 비는 대상유역을 격자로 나눴을 경우 강우관측소가 위치한 격자와 주변 8개의 위치한 격자의 면적강우량을 산술평균하여 사용하고 레이더 자료와 강우관측소의 강우자료를 비교하여 보정한 후 강우량을 추정하고 있다. 그러나 G/R 비를 평균하여 보정할 경우 대상유역에 위치한 강우자료가 오측이거나 관측이 되지 않았을 경우 관측지점의 강우량 추정에 영향을 주게 되며 G/R 비를 산출할 시 강우관측소가 가지는 오차를 줄이기 위하여 강우관측소의 강우자료와 레이더 자료간의 보정이 필요하다고 사료된다. 따라서 본 연구에서는 레이더의 관측반경은 480km 까지 가능하지만 양질의 자료를 사용하기 위해 광덕산에 위치한 레이더의 반경 100km 내의 강우관측소를 이용하였으며 기상청에서 운영하고 있는 94개 지점의 AWS (automatic weather system)를 이용하여 대상유역에 위치한 강우관측소의 강우자료와 레이더 강우량에 통계분석을 하여 최적의 G/R 비를 산정한 후 레이더 강우량을 추정하였다. 또한 추정된 강우량을 관측된 강우량과 비교하여 적용성을 판단하였다.
본 연구에서는 물리적 기반의 완전분포 모형인 $Vflo^{TM}$ 모형을 이용하여 강원도 인제군에 위치한 내린천 유역을 대상으로 광덕산 레이더 자료와 지상강우 자료를 이용하여 분포형 홍수유출모의를 실시하였다. $Vflo^{TM}$모형을 구성하기 위해서 GIS 지형공간 자료가 사용하였다. 유역의 하천 배수망과 각 격자에서의 경사를 구하기 위하여 250m 격자 크기의 DEM을 사용하였다. 본 연구에서는 2006년 7월 14일부터 2006년 7월 17일까지의 관측 레이더 강우자료(Quantitative Precipitation Estimation, QPE), 보정된 레이더 강우자료, 지상 강우량자료를 동일한 조건의 $Vflo^{TM}$모형에 입력하여 관측 유출량과 비교함으로써 기상청레이더 자료와 조건부합성기법으로 보정된 레이더 자료의 수문모형의 입력 자료로써의 타당성을 비교하고자 하였다. 광덕산 레이더 강우의 경우 관측치보다 상당히 과소 추정되는 모습을 보여주었고, 지상강우와 조건부합성기법으로 보정된 레이더 강우의 경우 실제 관측치와 비슷한 유출을 나타내었지만, 조건부 합성기법(Kim, 2008)을 이용하여 레이더강우와 지상강우를 합성한 보정 레이더 강우자료가 가장 좋은 결과를 보여주었다. 이를 통해 기상레이더 강우자료와 지상강우자료를 합성할 경우 충분히 레이더 강우를 이용하여 홍수모형의 입력자료로써 수문학적 활용성이 있음을 확인하였다.
Most grid-based distributed hydrologic models are complex in terms of data requirements, parameter estimation and computational demand. To address these issues, a simple grid-based hydrologic model is developed in a geographic information system (GIS) environment using storage-release concept. The model is named GIS Storage Release Model (GIS-StoRM). The storage-release concept uses the travel time within each cell to compute howmuch water is stored or released to the watershed outlet at each time step. The travel time within each cell is computed by combining the kinematic wave equation with Manning's equation. The input to GIS-StoRM includes geospatial datasets such as radar rainfall data (NEXRAD), land use and digital elevation model (DEM). The structural framework for GIS-StoRM is developed by exploiting geographic features in GIS as hydrologic modeling objects, which store and process geospatial and temporal information for hydrologic modeling. Hydrologic modeling objects developed in this study handle time series, raster and vector data within GIS to: (i) exchange input-output between modeling objects, (ii) extract parameters from GIS data; and (iii) simulate hydrologic processes. Conceptual and structural framework of GIS StoRM including its application to Pleasant Creek watershed in Indiana will be presented.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.