• 제목/요약/키워드: radar echoes

검색결과 63건 처리시간 0.017초

비트 주파수 추정에서의 윈도잉 효과 분석 (Analysis of Windowing Effects in the Estimation of Beat Frequencies)

  • 이종길
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2010년도 춘계학술대회
    • /
    • pp.668-670
    • /
    • 2010
  • 주파수 변조 방식의 연속 파형을 사용하는 레이다 시스템에서는 이동 목표물 등의 원격탐지를 위하여 각 거리에 따른 변이 주파수 및 추가적인 도플러 스펙트럼의 추정이 필요하다. 그러나 이러한 기저대역 또는 중간주파수 대역의 스펙트럼 추정은 주로 FFT 기법에 의하여 이루어지며 목표물에 대한 수신신호 시간이 비교적 짧은 경우 클러터 등의 강력한 간섭신호의 부엽이 인접 도플러 필터에 누설되어 탐지하고자 하는 신호가 가려지는 문제가 나타나게 된다. 따라서 본 논문에서는 약간의 처리손실을 감수하더라도 부엽의 절대적인 크기를 낮출 수 있는 효과적인 데이터 윈도잉 기법 및 그 결과들을 고찰하고 분석하였다.

  • PDF

북동 기류와 관련된 영동해안 지역의 대설 사례에 대한 WRF수치모의 연구 (A Numerical Simulation Study Using WRF of a Heavy Snowfall Event in the Yeongdong Coastal Area in Relation to the Northeasterly)

  • 이재규;김유진
    • 대기
    • /
    • 제18권4호
    • /
    • pp.339-354
    • /
    • 2008
  • A numerical simulation of a heavy snowfall event that occurred 13 January 2008 along the Yeongdong coastal area, was performed using WRF (Weather Research and Forecasting) in order to reveal mesoscale structures and to construct a conceptual model showing the meteorological background that caused the large difference in snowfall amounts between the Yeongdong mountain area and the Yeongdong coastal area. The simulation results matched well with various observations such as corresponding 12h-accumulated observed precipitation, surface wind obscrvation, radar echoes, and satellite infrared images. The simulation and the observations showed that the scale of the event was of meso - $\beta$ and meso - $\gamma$ scale. The simulation represented well the mesoscale process causing the large difference in snowfall amounts in the two areas. First, wind flow was kept, to a certain extent, from crossing the mountains due to the blocking effect of the low Froude number (~1). The northeast flow over the adjaccnt sea tumcd northwest as it approachcd the mountains, where it was trapped, allowing so-called cold air damming. Second, a strong convergence area formed where the cold northwest flow along the Yeongdong coastal area and the relatively warm and moist northeast flow advecting toward the coast met, supporting the fonllation of a coastal front. Thus, the vertical motion was strongest over the front located near the coast, leading to the heavy snowfall there rather than in the remote mountain area.

Polar Mesospheric Summer Echo Characteristics in Magnetic Local Time and Height Profiles

  • Young-Sook Lee;Ram Singh;Geonhwa Jee;Young-Sil Kwak;Yong Ha Kim
    • Journal of Astronomy and Space Sciences
    • /
    • 제40권3호
    • /
    • pp.101-111
    • /
    • 2023
  • We conducted a statistical study of polar mesospheric summer echoes (PMSEs) in relation to magnetic local time (MLT), considering the geomagnetic conditions using the K-index (or K). Additionally, we performed a case study to examine the velocity profile, specifically for high velocities (≥ ~100 m/s) varying with high temporal resolution at high K-index values. This study utilized the PMSE data obtained from the mesosphere-stratosphere-troposphere radar located in Esrange, Sweden (63.7°N, 21°E). The change in K-index in terms of MLT was high (K ≥ 4) from 23 to 04 MLT, estimated for the time PMSE was present. During the near-midnight period (0-4 MLT), both PMSE occurrence and signal-to-noise ratio (SNR) displayed an asymmetric structure with upper curves for K ≥ 3 and lower curves for K < 3. Furthermore, the occurrence of high velocities peaked at 3-4 MLT for K ≥ 3. From case studies focusing on the 0-3 MLT period, we observed persistent eastward-biased high velocities (≥ 200 m/s) prevailing for ~18 min. These high velocities were accompanied with the systematic motion of profiles at 85-88 km, including large shear formation. Importantly, the rapid variations observed in velocity could not be attributed to neutral wind effects. The present findings suggest a strong substorm influence on PMSE, especially in the midnight and early dawn sectors. The large zonal drift observed in PMSE were potentially energized by local electromagnetic fields or the global convection field induced by the electron precipitation during substorms.