• 제목/요약/키워드: radar application

검색결과 399건 처리시간 0.02초

확장 칼만 필터를 활용한 Z-R 관계식의 매개변수 실시간 결정 (Using Extended Kalman Filter for Real-time Decision of Parameters of Z-R Relationship)

  • 김정호;유철상
    • 한국수자원학회논문집
    • /
    • 제47권2호
    • /
    • pp.119-133
    • /
    • 2014
  • 본 연구에서는 Z-R 관계식의 매개변수를 안정적인 값으로 실시간 예측하고자 확장 칼만 필터기법을 적용하였다. 이를 위해 Z-R 관계식의 비선형을 고려하여 확장 칼만필터로 매개변수 결정모형을 구축하였다. 상태-공간모형은Adamowski and Muir (1989)의 연구를 기반으로 구축하였다. 상태-공간 모형의 상태변수는 Z-R 관계식의 두 매개변수로 설정하였다. 결과적으로 칼만이득과 상태변수가 발산하지 않는 안정적인 모형을 구축하였다. 주목할 점으로는 기존 방법으로 추정된 과대 혹은 과소한 매개변수가 필터링 되어 일부 제거되었다는 것이다. 부적절한 매개변수의 적용은 물리적으로 비현실적인 강우강도 추정 결과를 불러일으키는 원인이기 때문에 이러한 결과는 정량적 강수량 추정측면에서 효과가 크다고 할 수 있다. 또한 확장 칼만 필터로 예측한 매개변수로 레이더 강우를 추정한 결과, 편의보정계수가 1.0에 근사하게 나타나 편의보정과정 없이도 지상 강우강도와의 평균적인 차이는 근소한 것으로 나타났다. 또한 기존 방법으로 레이더 강우를 추정한 결과보다 전반적으로 정확도 높은 강우 추정이 가능한 것으로 나타났다.

강우 추정관계식의 매개변수 결정을 위한 확률대응법의 적용성 평가 (Applicability Evaluation of Probability Matching Method for Parameter Estimation of Radar Rain Rate Equation)

  • 노용훈;유철상
    • 대한토목학회논문집
    • /
    • 제34권6호
    • /
    • pp.1765-1777
    • /
    • 2014
  • 본 연구에서는 Z - R 관계식의 매개변수 결정을 위한 확률대응법(Probability Matching Method, PMM)의 적용성을 평가하였다. 이를 위해 먼저, 확률대응에 적합한 반사도와 강우강도의 자료 수와 히스토그램의 구간 간격을 결정하기 위한 민감도 분석을 수행하였다. 그 결과, 확률대응법으로 매개변수를 결정할 경우 1,000개의 자료쌍이 구축되어야 한다는 것을 확인하였다. 이는 약 2시간 정도 수집된 자료 수에 해당한다. 또한, 히스토그램의 구간 수는 100 구간 정도가 되어야 한다는 것을 확인하였다. 아울러 확률대응에는 반사도와 강우강도의 누가확률 차이보다 1차 모멘트 차이를 이용하는 것이 양호한 결과를 얻을 수 있고, 30~100% 구간을 대응하는 것이 적합하다는 것을 확인하였다. 본 연구에서는 이러한 결과를 바탕으로 비슬산 레이더로 관측한 실제 호우사상에 대해 확률대응법으로 매개변수를 결정하였다. 추정된 매개변수를 이용하여 결정한 레이더 강우는 전체적으로 지상강우보다 크게 산정되었다. 하지만, 이러한 결과는 레이더 강우와 지상 강우를 쉽게 대응하기 어려운 기존의 연구 결과를 고려하면 감안할 수 있는 부분으로 본 연구에서 평가한 확률대응법이 비교적 기존의 Z - R 관계식 보다 호우사상에 적합한 레이더 강우를 산정할 수 있다고 판단하였다.

실시간 GPS를 이용한 고효율 GPR CMP 탐사 (Highly efficient CMP surveying with ground-penetrating radar utilising real-time kinematic GPS)

  • Onishi Kyosuke;Yokota Toshiyuki;Maekawa Satoshi;Toshioka Tetsuma;Rokugawa Shuichi
    • 지구물리와물리탐사
    • /
    • 제8권1호
    • /
    • pp.59-66
    • /
    • 2005
  • 이 논문의 주 목적은 효율이 높은 공통중간점(CMP) 자료 획득 방법에 대해 서술함으로써, GPR탐사의 적용성을 넓히기 위함이다. CMP 자료 획득의 효율을 높이기 위한 가장 중요한 기술적 혁신은 실시간 이동 GPS(RTK-CPS)를 이용한 GPR 안테나의 위치 연속 모니터링이다. 이 연구에서 제안한 자동 안테나 이동 시스템은 GPR 탐사에서 시간을 가장 많이 요구하는 특정 지점에 안테나를 위치시키는 과정이 필요없기 때문에 탐사 시간 효율이 개선된다. 수치적 실험으로부터 자료획득 효율이 향상됨에 따라 자료의 밀도 및 CMP 중합수가 늘어나는 것을 예측할 수 있었으며, 이는 결과적인 자료의 신호대 잡음비 향상을 초래한다. 현장 적용은 이러한 가설을 입증하였으며, 이 연구에서 제안된 방법을 CMP 방식의 GPR 탐사를 좀 더 실질적이고 널리 사용될 수 있게 한다. 게다가 이 방법은 정밀한 지하수 정보를 제공할 수도 있는데, 이는 CMP 방식으로 얻은 공간적으로 조밀한 유전상수 분포를 물포화도와 갈이 지하수 특성과 관계 깊은 조밀한 물리량 분포로 변환할 수 있기 때문이다.

KOMPSAT-5 후방산란계수 자료로 산출된 해상풍 검증 (Validation of Sea Surface Wind Estimated from KOMPSAT-5 Backscattering Coefficient Data)

  • 장재철;박경애;양도철
    • 대한원격탐사학회지
    • /
    • 제34권6_3호
    • /
    • pp.1383-1398
    • /
    • 2018
  • 해상풍은 복잡한 해양 현상을 이해하는 데 가장 기초 요소 중 하나이다. 1990년대 초부터 산란계를 활용하여 전세계 바람장 자료를 생산해왔지만, 낮은 해상도로 인해 해양 연구에 제한적으로 사용되었다. Synthetic Aperture Radar(SAR)는 이러한 한계점을 보완하여 고해상도의 바람장 자료 생산이 가능하다. KOMPSAT-5는 한반도 최초의 X-band SAR 탑재 인공위성으로 고해상도 해상풍 산출이 가능하다. 본 연구는 KOMPSAT-5 후방산란계수 자료를 활용하여 산출한 해상풍의 검증 결과를 최초로 제시하였다. 18장의 KOMPSAT-5 ES 모드 자료를 수집하여 해양 부이와의 일치점 데이터베이스를 생산하였다. 정확한 해상풍 산출을 위해 육지 화소, 스페클 잡음, 선박 화소를 제거하는 전처리 과정을 거쳤고, 해양 부이 실측 자료에 Liu-Katsaros-Businger (LKB) 모델을 통해 10-m 중성 바람으로 변환하여 기준 자료로 활용하였다. XMOD2를 활용하여 산출한 해상풍은 후방산란계수 산출식에 따라 $2.41-2.74m\;s^{-1}$의 평균 제곱근 오차를 보였다. 분석 결과 KOMPSAT-5 후방산란계수 자료를 활용하여 해상풍을 산출하는 경우, 대기 중력파, 파랑, 내부파를 포함한 해양 기상 환경과 레인지 모호성(range ambiguity), 입사각의 이산적 불연속적 분포를 포함한 영상 품질에 의한 잠재적 오차 요인이 존재함을 규명하였다.

해안 경계 지능화를 위한 AI학습 모델 구축 방안 (A Methodology of AI Learning Model Construction for Intelligent Coastal Surveillance)

  • 한창희;김종환;차진호;이종관;정윤영;박진선;김영택;김영찬;하지승;이강욱;김윤성;방성완
    • 인터넷정보학회논문지
    • /
    • 제23권1호
    • /
    • pp.77-86
    • /
    • 2022
  • 본 연구의 궁극적인 목표인 지능형 해안 경계 체계 구축을 위해, 본 논문에서는 먼저 해안경계 지능화를 위한 AI 학습 모델의 구축 방안을 제시하였다. 우리는 3면이 바다로 이루어져있고 남과 북이 대치하는 상황으로 인해 해안 경계가 중요한 국가적 과업인 나라이다. 국방개혁 2.0에 의해 해안경계를 담당하고 있는 R/D (Radar) 운용인력이 감소하고 복무 기간이 단축되고 있다. 특히, 레이더와 같이 고도의 장비를 다루는 데에는 휴먼 에러가 발생할 개연성은 늘 상존하는 것이다. 해안 경계와 인공지능의 접목은 정부의 인공지능 국가전략의 구현과 확대라는 목표에도 필요 충분한 시점에 와 있다. 지능형 해안 경계 체계 구축을 위한 AI학습 모델 개발의 기능별 방안을 제시하였다. R/D신호 분석 AI모델 개발, 책임해역 분석 AI모델 개발, 표적 관리 자동화 기능으로 구분하였다. 이를 실현하기 위한 3단계 추진 전략을 살펴보았다. 1단계는 AI 학습모델 구축의 통상적인 단계로써, 데이터 수집, 데이터 저장, 데이터 여과, 데이터 정제, 데이터 변환 등이 이루어진다. 2단계에서는 R/D 특성에 기초해 신호분석을 실시하고, 실상과 허상을 분류하는 AI 학습모델 개발을 진행하고, 책임해역을 분석하고, 취약지역/시간 분석을 실시한다. 최종 단계에서는 AI 학습모델의 검증, 가시화 및 시연 등이 이루어진다. 군 무기체계에 AI 기술이 접목돼 지능화된 무기체계로 바뀌는 최초의 성과가 달성된다.

구글어스엔진 클라우드 컴퓨팅 플랫폼 기반 위성 빅데이터를 활용한 수재해 모니터링 연구 (Research of Water-related Disaster Monitoring Using Satellite Bigdata Based on Google Earth Engine Cloud Computing Platform)

  • 박종수;강기묵
    • 대한원격탐사학회지
    • /
    • 제38권6_3호
    • /
    • pp.1761-1775
    • /
    • 2022
  • 예측하기 힘든 기후변화로 인해 물 관련 재해의 발생 빈도와 피해 규모도 지속적으로 증가하는 추세이다. 재난관리의 측면에서 광범위한 지역의 피해면적을 파악하고, 중·장기적 예측을 위한 모니터링이 필수적이다. 수재해 분야에서 광역적 모니터링을 위해 Synthetic Aperture Radar (SAR) 위성영상을 활용한 원격탐사 기술 연구가 활발히 진행되고 있다. 수재해 모니터링을 위한 시계열 분석에는 방대한 양의 영상수집과 잡음이 많은 레이더 산란 특성을 고려한 복잡한 전처리과정이 필요하며, 이를 위해 상당한 시간이 소요되는 한계가 있다. 최근 클라우드 컴퓨팅 기술의 발전과 함께 위성 빅데이터를 활용한 시·공간 분석이 가능한 많은 플랫폼들이 제안되고 있다. 구글어스엔진(Google Earth Engine, GEE)은 대표적인 플랫폼으로, 600여개의 위성 자료를 무료로 제공하고 있으며 위성영상의 분석준비데이터를 기반으로 준-실시간 시·공간 분석이 가능하다. 이에 본 연구에서는 구글어스엔진을 활용한 즉각적인 수재해 피해 탐지와 중·장기적 시계열 관측 연구를 수행하였다. 변화탐지에 주로 활용되는 Otsu 기법을 통해 '20년 발생한 집중호우를 중심으로 하천 범람으로 인한 하폭의 변화와 피해 면적을 확인하였다. 또한 재난관리 측면에서 모니터링의 중요성이 요구되는 만큼 상습침수지역으로 선정된 연구대상 지역을 중심으로 '18년부터 '22년까지의 시계열 수체의 변화 경향을 확인하였다. 구글어스엔진은 자바스크립트 기반 코딩을 통한 짧은 처리시간, 시공간 분석과 표출의 강점으로 수재해 분야 활용이 가능할 것으로 판단된다. 더불어 향후 다양한 위성 빅데이터와의 연계를 통해 활용 분야가 확대될 것으로 기대된다.

기계학습 기반 고해상도 토양수분 복원을 위한 Sentinel-1 SAR의 자립형 활용성 평가 (Assessment of Stand-alone Utilization of Sentinel-1 SAR for High Resolution Soil Moisture Retrieval Using Machine Learning)

  • 정재환;조성근;전현호;이슬찬;최민하
    • 대한원격탐사학회지
    • /
    • 제38권5_1호
    • /
    • pp.571-585
    • /
    • 2022
  • 기후변화로 인한 가뭄, 홍수, 산불, 산사태 등 자연재해의 위협이 증가함에 따라, 합성개구레이더(Synthetic Aperture Radar, SAR)와 같이 고해상도 토양수분 복원에 대한 사회적 수요도 증가하고 있다. 하지만 국내 환경은 산림 지형의 비율이 높아, 식생과 지형의 영향을 크게 받는 SAR 자료에서 토양수분을 복원하는데 많은 어려움을 겪고 있다. 이에 본 연구에서는 기계학습의 일종인 인공신경망(Artificial Neural Network, ANN) 기법을 활용하여, Sentinel-1 SAR 영상의 자립형 활용성을 평가하였다. Sentinel-1에서 얻을 수 있는 이중편파 산란계수는 토양수분 거동과 유의미한 상관성을 가지고 있음을 확인할 수 있었으며, 다른 위성이나 지점에서 관측된 보조자료를 사용하지 않고도 식생의 효과 등을 보정할 수 있는 자립형 활용 가능성도 확인할 수 있었다. 하지만 각 지점별, 지형 그룹별 특성에 의한 차이가 크게 나타났으며, 특히 산지와 평지에서 학습된 모형을 교차적용하였을 때 토양수분을 제대로 모의할 수 없는 현상이 발생하였다. 또한 이러한 문제를 해결하고자 학습 지점의 수를 늘리는 경우에는 토양수분 복원 모형이 평활화되어 상관계수는 증가하였으나, 지점에서의 오차는 점점 증가하였다. 따라서 고해상도 SAR 토양수분 자료를 광범위하게 적용하기 위해서는 체계적 연구 수행이 선행되어야 하며, 목적에 따른 학습 지점의 선정, 적용 지역의 범위 등을 구체적으로 제한하여 활용한다면 다양한 분야에서 효과적으로 활용할 수 있을 것으로 기대된다.

Sentinel-1 SAR 영상을 활용한 국내 내륙 수체 학습 데이터셋 구축 및 알고리즘 적용 연구 (A Study of Development and Application of an Inland Water Body Training Dataset Using Sentinel-1 SAR Images in Korea)

  • 이어루;정형섭
    • 대한원격탐사학회지
    • /
    • 제39권6_1호
    • /
    • pp.1371-1388
    • /
    • 2023
  • 지구온난화로 인해 촉발된 기후변화가 홍수와 같은 수재해의 빈도와 규모를 증가시키며 국내 또한 장마와 집중호우로 인한 수재해가 증가하는 추세를 보인다. 이에 광범위한 수재해에 대해 효과적인 대응 및 기후 변화에 따른 선제적 대처가 필수적이며 이는 위성레이더 영상을 통해 가능하다. 본 연구에서는 Sentinel-1 위성 레이더 영상으로부터 국내 수체의 특성을 반영하기 위해 한강권역과 낙동강 권역의 일부 수체 영역에 대해 수체 학습 데이터셋 1,423장을 구축하였다. 정밀한 데이터 어노테이션(Annotation)을 위해 다양한 상황에 따른 구축 기준 문서를 작성한 뒤 진행하였다. 구축이 완료된 데이터셋을 딥러닝 모델 중 U-Net에 적용하여 수체 탐지 결과를 분석하였다. 최종적으로 학습된 모델을 학습과에 활용되지 않은 수체 영역에 적용하여 결과를 분석함으로써 전 국토 수체 모니터링의 가능성을 확인하였다. 분석 결과 구축된 수체 영역의 대해서는 F1-Score 0.987, Intersection over Union (IoU) 0.955의 높은 정확도로 수체를 탐지할 수 있었으며, 학습 및 평가에 활용되지 않은 다른 국내 수체 영역에 대해서도 동일하게 F1-Score 0.941, IoU 0.89의 높은 수체 탐지 결과를 나타냈다. 두 결과 모두 전반적으로 일부 그림자 영역과 폭이 좁은 하천에서 오류가 관찰되었으나, 그 외에는 정밀하게 수체를 탐지하였다. 이러한 연구 결과는 수재해 피해 규모 및 수자원 변화 모니터링에 중요한 기여를 할 것으로 기대된다. 추후 연구에서는 보다 다양한 수체 특성을 가진 데이터셋을 추가 구축한다면 오분류한 영역을 개선할 수 있을 것으로 기대되며, 전 국토의 수체를 효율적으로 관리 및 모니터링하는데 활용될 것으로 사료된다.

이방성 레이다 시추공 토모그래피와 그 응용 (Anisotrpic radar crosshole tomography and its applications)

  • 김정호;조성준;이명종
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2005년도 제7회 특별심포지움 논문집
    • /
    • pp.21-36
    • /
    • 2005
  • 우리나라의 지질은 화강암과 편마암이 주를 이루나 시추공 레이다 토모그래피 탐사자료에서 이방성이 나타나는 것은 드문 일이 아니며 심지어는 결정질 암반에서 나타나기도 한다. 이방성 문제를 해결하기 위해 불균질 타원형 이방성 매질을 가정하여 토모그래피 역산 알고리듬을 개발하였으며, 이를 계속적으로 개량하여 왔다. 개발된 알고리듬에 의한 역산 결과는 세 종류의 변수, 즉 최고속도, 최저속도, 대칭축 방향의 세 종류의 토모그램으로 영상화할 수 있다. 이 논문에서는 먼저 개발된 알고리듬에 대하여 논의하고, 국내에서 수행한 4가지의 이방성 레이다 토모그래피 탐사 사례에 대해 소개한다 전반부의 두 사례는 토목 구조물의 건설을 위한 지반조사의 일환으로 수행한 사례로서, 주목적은 석회암 용식공동의 탐지에 있었다. 후반부의 두 탐사 사례는 결정질 암반인 편마암과 화강암 지역에서 수행한 사례이다. 이들 4가지 사례에서 이방성을 야기하는 원인은, 화강암 지역에서 수행한 사례에서는 미세 열극이 일정한 방향으로 배열함에 있었으며, 나머지 석회암과 편마암 지역에서의 사례는 특정광물이 일정한 방향으로 배열함에 있었다 이들 이방성 토모그래피 탐사 사례에 대한 논의를 통하여, 지하 매질이 이방성을 될 경우, 이방성의 분포는 지하의 상태 변화를 이해하는 데에 매우 중요한 역할을 하며, 이방성 분포 자체가 매우 중요한 정보라는 결론을 얻을 수 있었다. 특히 최고속도와 최저속도의 차이를 최고속도로 정규화한 값으로 정의한 이방성 계수와 대칭축 방향은 이방성 토모그래피 영상을 해석함에 매우 유용함을 확인하였다.verlapping Rate(DOR)는 상호작용 예측 정확도의 중요한 요소임을 찾아 내었다.time을 최소화하는 동시에 클라이언트들의 제한된 에너지 소비를 최소화하는데 목적이 있다. 제안기법에 대한 평가는 수학적 분석을 통해 HIDAF 기법과 기존의 브로드캐스트 기법의 성능을 비교 분석한다.하였으나 사료효율은 증진시켰으며, 후자(사양, 사료)와의 상호작용은 나타나지 않았다. 이상의 결과는 거세비육돈에서 1) androgen과 estrogen은 공히 자발적인 사료섭취와 등지방 침적을 억제하고 IGF-I 분비를 증가시키며, 2) 성선스테로이드호르몬의 이 같은 성장에 미치는 효과의 일부는 IGF-I을 통해 매개될 수도 있을을 시사한다. 약 $70 {\~} 90\%$의 phenoxyethanol이 유상에 존재하였다. 또한, 미생물에 대한 항균력도 phenoxyethanol이 수상에 많이 존재할수록 증가하는 경향을 나타내었다. 따라서, 제형 내 oil tomposition을 변화시킴으로써 phenoxyethanol의 사용량을 줄일 수 있을 뿐만 아니라, 피부 투과를 감소시켜 보다 피부 자극이 적은 저자극 방부시스템 개발이 가능하리라 보여 진다. 첨가하여 제조한 curd yoghurt는 저장성과 관능적인 면에서 우수한 상품적 가치가 인정되는 새로운 기능성 신제품의 개발에 기여할 수 있을 것으로 사료되었다. 여자의 경우 0.8이상이 되어서 심혈관계 질환의 위험 범위에 속하는 수준이었다. 삼두근의 두겹 두께는 남녀 각각 $20.2\pm8.58cm,\;22.2\pm4.4

  • PDF

인공위성 합성개구레이더 영상 자료의 해양 활용 - 해상풍 산출을 중심으로 - (Oceanic Application of Satellite Synthetic Aperture Radar - Focused on Sea Surface Wind Retrieval -)

  • 장재철;박경애
    • 한국지구과학회지
    • /
    • 제40권5호
    • /
    • pp.447-463
    • /
    • 2019
  • 해상풍은 해양 현상을 이해하고, 지구 온난화에 의한 지구 환경의 변화를 분석하기 위한 필수 요소이다. 전세계 연구 기관은 해상풍을 정확하고 지속적으로 관측하기 위해 산란계(scatterometer)를 개발하여 운영해오고 있으며, 정확도는 풍향이 ${\pm}20^{\circ}$, 풍속이 ${\pm}2m\;s^{-1}$ 안팎이다. 하지만, 산란계의 해상도는 12.5-25.0 km로, 해안선이 복잡하고 섬이 많은 한반도 근해에서는 자료의 결측이 빈번하게 발생하여 활용도가 감소한다. 그에 반해, Synthetic Aperture Radar (SAR, 합성개구레이더)는 마이크로파를 활용하는 전천후 센서로, 1 km 이하의 고해상도 해상풍이 산출이 가능하여 산란계의 단점 보완이 가능하다. 본 연구에서는 일반적으로 활용되는 SAR 자료 기반 해상풍 산출 알고리즘인 Geophysical Model Function (GMF, 지구 물리 모델 함수)를 밴드별로 분류하여 조사하였다. 상대 풍향, 입사각, 풍속에 따른 후방산란계수를 L-band Model (LMOD, L 밴드 모델), C-band Model (CMOD, C 밴드 모델), X-band Model (XMOD, X 밴드 모델)에 적용하여 모의하였고, 각 GMF의 특성을 분석하였다. 이러한 GMF를 SAR 탑재 인공위성 자료에 적용하여 산출한 해상풍의 정확도 검증 연구에 대해 조사하였다. SAR 자료 기반 해상풍의 정확도는 영상 관측 모드, 적용한 GMF의 종류, 정확도 비교 기준 자료, SAR 자료 전처리 방법, 상대 풍향 정보 산출 방법 등에 따라 변하는 것으로 나타났다. 본 연구를 통해 국내 연구자들의 SAR 자료 기반 해상풍 산출 방법에 대한 접근성이 향상되고, 고해상도 해상풍 자료를 활용한 한반도 근해 분석에 이바지할 것으로 기대된다.