• 제목/요약/키워드: rabbit atrial myocytes

검색결과 10건 처리시간 0.021초

[$Cl^-$-sensitive Component of $Ca^{2+}$-activated Tail Current in Rabbit Atrial Myocytes

  • Park, Choon-Ok;So, In-Suk;Ho, Won-Kyung;Kim, Woo-Gyeum;Earm, Yung-E
    • The Korean Journal of Physiology
    • /
    • 제26권1호
    • /
    • pp.27-35
    • /
    • 1992
  • We used the whole cell patch clamp technique to examine the ionic basis for the tail current after depolarizing pulse in single atrial myocytes of the rabbit. We recorded the tail currents during various repolarizations after short depolarizing pulse from a holding potential of -70 mV. The potassium currents were blocked by external 4-aminopyridine and replacement of internal potassium with cesium. The current was reversed to the outward direction above +10 mV. High concentrations of intracellular calcium buffer inhibited the activation of the current. Diltiazem and ryanodine blocked it too. These data suggest that the current is activated by intracellular calcium released from sarcoplasmic reticulumn. When the internal chloride concentration was increased, the inward tail current was increased. The current was partially blocked by the anion transport blocker niflumic acid. The current voltage curve of the niflumic acid sensitive current component shows outward rectification and is well fitted to the current voltage curve of the theoretically predicted chloride current calculated from the constant field equation. The currents recorded in rabbit atrial myocytes, with the method showing isolated outward Na Ca exchange current in ventricular cells of the guinea pig, suggested that chloride conductance could be activated with the activation of Na/ca exchange current. From the above results it is concluded that a chloride sensitive component which is activated by intracellular calcium contributes to tail currents in rabbit atrial cells.

  • PDF

GS-386이 단일 심근 세포의 Ca2+ 전류에 미치는 효과 (Effects of GS-386 on the calcium current in rabbit atrial myocytes)

  • 박춘옥;장경재;김양미;한재희;홍성근
    • 대한수의학회지
    • /
    • 제34권1호
    • /
    • pp.37-47
    • /
    • 1994
  • The effects of the novel compound GS-386 on the calcium current were investigated in rabbit atrial myocytes. The calcium current was recorded during various depolarizations of 200 ms duration from a holding potential of -40 mV using the whole cell patch clamp technique. The calcium current was activated from -30 mV, reached maximum amplitude at +10 mV and almost disappeared at +50 mV. Superfusion of GS-386 led to a reduction of the calcium current amplitude dose-dependently and $ED_{50}$ was $2.5{\times}10^{-7}M$. But the dependence of the calcium current on the membrane potential was not altered by GS-386. The inactivation of the calcium currents showed single exponential curves in both before and after application of GS-386. The inactivation time constants before and after application of GS-386 were almost the same(35 ms and 32.5 ms). The steady-state inactivation curve of the calcium current was not shifted by GS-386. The calcium currents both before and after application of GS-386 recovered completely in 1 sec and the recovery time constants were about 200 ms in both cases. From the above results it is concluded that the novel compound GS-386 has calcium antagonistic property decreasing the calcium current.

  • PDF

The effect of intracellular $Na^+$ on spontaneous action potential of single cardiac myocytes in rabbit pulmonary vein

  • Kim, Won-Tae;Nam, Ki-Byung;Kim, Yoo-Ho;Jang, Yeon-Jin;Park, Ki-Rang;Park, Chun-Sik;Lee, Chae-Hun m
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 2001년도 학술 발표회 진행표 및 논문초록
    • /
    • pp.58-58
    • /
    • 2001
  • Even though atrial fibrillation is the most prevalent arrhythmia, the mechanism of development is not yet clear. Recently, there has been several reports that the most frequent source of paroxysmal atrial fibrillation is located inside pulmonary vein. Recently we successfully isolated single cardiac myocytes which were inside of pulmonary vein and reported the spontaneous action potential was generated from these cells.(omitted)

  • PDF

Chelidonine blocks hKv 1.5 channel current

  • Eun, Jae-Soon;Kim, Dae-Keun;Kwak, Young-Geun
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2003년도 Annual Meeting of KSAP : International Symposium on Pharmaceutical and Biomedical Sciences on Obesity
    • /
    • pp.112-112
    • /
    • 2003
  • Voltage-gated $K^{+}$ (Kv) channels represent a structurally and functionally diverse group of membrane proteins. These channels play an important role in determining the length of the cardiac action potential and are the targets for antiarrhythmic drugs. Many $K^{+}$ channel genes have been cloned from human myocardium and functionally contribute to its electrical activity. One of these channels, Kv1.5, is one of the more cardiovascular-specific $K^{+}$ channel isoforms identified to date and forms the molecular basis for an ultra-rapid delayed rectifier $K^{+}$ current found in human atrium. Thus, the blocker of hKv1.5 is expected to be an ideal antiarrhythmic drug for atrial fibrillation. Chelidonine was isolated from Chelidonium majus L. We examined the effect of chelidonine on the hKv1.5 current expressed in Ltk-cells using whole cell mode of patch clamp techniques. Chelidonine selectively inhibited the hKv1.5 current expressed in Ltk-cells in a concentration-dependent manner, whereas did not affect the HERG current expressed in HEK-293 cells. Additionally, chelidonine reduced the tail current amplitude recorded at -50 mV after 250 ms depolarizing pulses to +60 mV, and slowed the deactivation time course resulting in a 'crossover' phenomenon when the tail currents recorded under control conditions and in the presence of chelidonine were superimposed. We found that chelidonine also inhibited the $K^{+}$ current in isolated human atrial myocytes where hKv1.5 channels were predominantly expressed. Furthermore, we examined the effects of chelidonine on the action potentials in rabbit hearts using conventional microelectrode technique. Chelidonine prolonged the action potential durations (APD) of atrial, ventricular myocytes and Purkinje fibers in a dose-dependent manner. However, the effect of chelidonine on atrial APD was frequency-dependent whereas the effect of chelidonine on the APDs of ventricular myocytes and Purkinje fibers was not frequency- dependent. Also, the selective action of chelidonine on heart was more potent than dofetilide, $K^{+}$ channel blocker.

  • PDF

토끼 심장세포의 전기적 활동에 대한 갑상선 호르몬의 효과 (Effects of Thyroid Hormone in vitro on the Electrical Activity of the Rabbit Heart Cell)

  • 홍성근;윤효인
    • 대한수의학회지
    • /
    • 제27권1호
    • /
    • pp.27-34
    • /
    • 1987
  • To verify the direct effects of the thyroid hormone ($T_3$) on the rabbit heart, $T_3$-Tyrode solution in vitro was perfused on the normal atrial muscles and enzymatically isolated ventricular myocytes of the rabbit. All the experimental procedures were conducted at $35^{\circ}C$ and the same procedures were repeated after Ca. 120 minutes from the beginning of $T_3$-Tyrode perfusion. Compared to the state between the normal Tyrode solution and $T_3$-Tyrode solution, results were observed on the same cells by electrophysiological methods (conventional intracellular recording and whole cell patch clamping) as soon as possible. The results obtained were as follows : 1. Action potential duration (APD) on the left atrial muscle was reduced under the perfusion of $T_3$-Tyrode. 2. Absolute refractory Period was shortened by $T_3$-Tryrode perfusion. (117 msec./114 msec., 90 msec./78 msec.) 3. Maximal Ca currents ($i_{Ca}$) were decreased in single: ventricular myocytes under the $T_3$-Tyrode (2.98 nA) than under the normal Tyrode (6.65 nA) 4. On I-V relation, reversal potential was shifted to lower membrane potential and membrane potential showing maximal $i_{Ca}$was lowered from +10mV to -20mV by $T_3$ effect. 5. Above results were likely to explain that tachycardia in the hyperthyroid state was caused in part by the reduced repolarization phase and the reduced refractory period due to the decrease of the Ca current.

  • PDF

Calcium Current and Background Current Activation in L-triiodothyronine Loaded Ventricular Myocytes of the Rabbit

  • Han, Jin;Kim, Eui-Yong;Han, Jae-Hee;Park, Choon-Ok;Hong, Seong-Geun;Leem, Chae-Hun;So, In-Suk;Ho, Won-Kyung;Earm, Yung-E;Sung, Ho-Kyung
    • The Korean Journal of Physiology
    • /
    • 제26권2호
    • /
    • pp.99-111
    • /
    • 1992
  • Permissive action of thyroid hormone at the level of Ca channel and responsible mechanisms underlying thyroid hormone-induced change in myocardial contractile state and $T_3-induced$ arrhythmias were investigated in rabbit ventricular or atrial myocytes using whole cell patch clamp technique. Single cells were isolated by Langendorff perfusion with collagenase. Cardiac myocytes were incubated in $low-Cl^-,$, $high-K^+$ medium containing $1_{\mu}M\;L-triiodothyronine\;(T_3)$ at $4^{\circ}C$ for 2.10 hours. The calcium currrent $(I_{Ca})$ was increased in $T_3$ loaded cells, however, the shape of current voltage curve and reverse potential did not altered. Cyclic AMP, cyclic GMP, isoprenaline and 3-isobutyl-1-methyl-xanthine increased $I_{Ca}$ in euthyroid and hyperthyroid conditions, and acetylcholine blocked the increase of $I_{Ca}\;in\;T_3$ loaded cells. The amplitude of $I_{Ca}$ was much larger after perfusing cGMP than cGMP in both conditions, whereas the degree of increase of $I_{Ca}$ was greater after perfusing cAMP than cGMP in $T_3$ loaded cells. The degree of increase of $I_{Ca}$ after perfusing isoprenaline or IBMX also was greater in $T_3$ loaded cells than in control cells. Background current induced by isoprenaline also increased in $T_3$ loaded cells. The Ca release dependent inward current was increased in amplitude but its activation and inactivation time course was not changed in $T_3$ loaded cells. Activation of Na pump current was not changed in $T_3$ loaded cells. From the above results it is suggested that thyroid hormone induced increase in the contractile state of cardiac myocytes are accompanied by augmented $I_{Ca}$ and the increase of Ca release from sarcoplasmic reticulum and the permissive action of thyroid hormone to catecholamines could induce arrhythmias through the increase of $I_{Ca}$ and background current.

  • PDF

심근세포 및 혈관 평활근에 대한 Nitric Oxide 작용의 민감성의 차이 (Nitric Oxide Modulates Calcium Current in Cardiac Myocytes but not in Intact Atrial Tissues)

  • 박춘옥;강영진;이회영;장기철
    • 대한약리학회지
    • /
    • 제31권3호
    • /
    • pp.279-284
    • /
    • 1995
  • 본 연구의 목적은 외부에서 nitric oxide (NO)를 투여 하였을때 심근 수축력, 심박동수의 변화 및 혈관 평활근에 대한 효과를 비교함으로서 NO에 대한 이들 장기의 민감도가 서로 같은지 또는 상이한지를 알아보고자 하였다. 본 실험에서는 PIANO 방법에 의한 근장력의 변화와 아울러 심근에서의 $Ca^{2+}$ current를 측정하였다. 랫트의 심방근에 대한 PIANO $(STZ,\;100\;{\mu}M)$는 심근수축력 및 심박동수에 전혀 변화를 주지 않았지만 혈관 평활근에서는 강한 이완 작용을 나타내었다. 한편, 8-Br-cGMP도 고농도 $(100\;{\mu}M)$에서만 심근 수축력을 억제하였다. 토끼의 심방근세포에서 Whole cell voltage patch clamp를 사용시 bradykinin, SNP, 8-Br-cGMP 및 PIANO는 $Ca^{2+}$ current를 억제하였다. 이러한 사실은 외부에서 공급되는 NO에 대한 심근과 혈관 평활근의 반응에는 민감도의 차이가 있음을 암시하며 더 나아가 심근의 경우에도 NO 반응에는 종 (species)간의 차이와 동일 종이라 하더라도 세포(cell)와 장기(tissue)에 차이가 있을 가능성을 제시하였다.

  • PDF

Prostaglandin $E_1$ Increases cGMP Levels in Beating Rabbit Atria: Lack of Effects of $PGE_1$-induced Cyclic Nucleotides on Secretory and Contractile Functions

  • Jin, Xuan Shun;Quan, He Xiu;Kim, Sun-Young;Park, Sung-Hun;Kim, Sung-Zoo;Lee, Ho-Sub;Cho, Kyung-Woo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제11권5호
    • /
    • pp.175-182
    • /
    • 2007
  • Members of prostaglandin(PG) E-series elicit cellular effects mainly through adenylyl cyclase-cAMP signaling. The role of $PGE_2$-induced increase in cAMP has been shown to be compartmentalized in the cardiac myocytes: $PGE_2$-induced increase of cAMP is not involved in the control of cardiomyocytic contraction. The purpose of the present study was to define the effect of $PGE_1$ on the cGMP levels and the role of $PGE_1$ in the atrial secretory function. Experiments were performed in perfused beating rabbit atria and atrial contractile responses, cGMP and cAMP efflux, and atrial natriuretic peptide(ANP) secretion were measured. $PGE_1$ increased cGMP as well as cAMP efflux concentration in a concentration-dependent manner, however, no significant changes in atrial secretory responses were observed(with $1.0{\mu}M\;PGE_1$; for cGMP, $144.76{\pm}37.5%$, n=11 versus $-16.81{\pm}4.76%$, n=6, control, p<0.01; for cAMP, $187.60{\pm}41.52%$, n=11 versus $7.38{\pm}19.44%$, n=6, control, p<0.01). $PGE_1$ decreased atrial dynamics slightly but transiently, whereas $PGE_2$ showed similar effects but with lower potency. Isoproterenol increased atrial cAMP efflux(with 2.0 nM; $145.71{\pm}41.89$, n=5 versus $7.38{\pm}19.44%$, n=6, control, p<0.05) and mechanical dynamics and decreased ANP secretion. The $PGE_1$-induced increase in cGMP efflux showed a bell-shaped concentration-response curve. $PGE_1$-induced increase of cGMP efflux was not observed in the presence of L-NAME, an inhibitor of nitric oxide(NO) synthase, or ODQ, an inhibitor of NO-sensitive guanylyl cyclase. L-NAME and ODQ showed no significant effect on the $PGE_1$-induced transient decrease of atrial dynamics. These data indicate that $PGE_1$ increases cGMP levels via NO-soluble GC signaling in the cardiac atrium and also show that $PGE_1$-induced increases in cGMP and cAMP levels are not involved in the regulation of atrial secretory and contractile functions.

심장세포에서 세포내 Ca2+ 증가에 의해 활성화되는 Cl- 통로의 특성과 역할 (Thecharacters of Ca2+ activated Cl- channel and its role in the cardiac myocytes)

  • 박춘옥;김양미;한재희;홍성근
    • 대한수의학회지
    • /
    • 제34권1호
    • /
    • pp.25-36
    • /
    • 1994
  • The inward tail current after a short depolarizing pulse has been known as Na-Ca exchange current activated by intracellular calcium which forms late plateau of the action potential in rabbit atrial myocytes. Chloride conductance which is also dependent upon calcium concentration has been reported as a possible tail current in many other excitable tissues. Thus, in order to investigate the exsitance of the calcium activated chloride current and its contribution to tail current, whole cell voltage clamp measurement has been made in single atrial cells of the rabbit. The current was recorded during repolarization following a brief 2 ms depolarizing pulse to +40mV from a holding potential of -70mV. When voltage-sensitive transient outward current was blocked by 2 mM 4-aminopyridine or replacement potassium with cesium, the tail current were abolished by ryanodine$(1{\mu}M)$ or diltiazem$(10{\mu}M)$ and turned out to be calcium dependent. The magnitudes of the tail currents were increased when intracellular chloride concentration was increased to 131 mM from 21 mM. The current was decreased by extracellular sodium reduction when intracellular chloride concentration was low(21 mM), but it was little affected by extracellular sodium reduction when intracellual chloride concentration was high(131 mM). The current-voltage relationship of the difference current before and after extracellular sodium reduction, shows an exponential voltage dependence with the largest magnitude of the current occurring at negative potentials, with is similar to current-voltage relationship at negative potentials, which is similar to current-voltage relationship of Na-Ca exchange current. The current was also decreased by $10{\mu}M$ niflumic acid and 1 mM bumetanide, which is well known anion channel blockers. The reversal potentials shifted according to changes in chloride concentration. The current-voltage relationships of the niflumic acid-sensitive currents in high and low concentration of chloride were well fitted to those predicted as chloride current. From the above results, it is concluded that calcium activated chloride component exists in the tail current with Na-Ca exchange current and it shows the reversal of tail current. Therefore it is thought that in the physiologic condition it leads to rapid end of action potential which inhibits calcium influx and it contributes to maintain the low intracellular calcium concentration with Na-Ca exchange mechanism.

  • PDF

Modulation of ATP-Induced Activation of the Muscarinic $K^+$ Channel Activity by Protein Kinase C

  • Kim, Yang-Mi;Park, Hong-Ki;Han, Jae-Hee;Park, Choon-Ok;Hong, Seong-Geun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제2권6호
    • /
    • pp.743-752
    • /
    • 1998
  • The atrial acetylcholine-activated $K^+\;(K_{ACh})$ channel is gated by the pertussis toxin-sensitive inhibitory G $(G_K)$ protein. Earlier studies revealed that ATP alone can activate the $K_{ACh}$ channel via transphosphorylation mediated by nucleoside-diphosphate kinase (NDPK) in atrial cells of rabbit and guinea pig. This channel can be activated by various agonists and also modulated its function by phosphorylation. ATP-induced $K_{ACh}$ channel activation (AIKA) was maintained in the presence of the NDPK inhibitor, suggesting the existence of a mechanism other than NDPK-mediated process. Here we hypothesized the phosphorylation process as another mechanism underlying AIKA and was undertaken to examine what kinase is involved in atrial cells isolated from the rat heart. Single application of 1 mM ATP gradually increased the activity of $K_{ACh}$ channels and reached its maximum $40{\sim}50$ sec later following adding ATP. AIKA was not completely reduced but maintained by half even in the presence of NDPK inhibitor. Neither ADP nor a non-hydrolyzable ATP analogue, AMP-PNP can cause AIKA, while a non-specific phosphatase, alkaline phosphatase blocked completely AIKA. PKC antagonists such as sphingosine or tamoxifen, completely blocked AIKA, whereas PKC catalytic domain increased AIKA. Taken together, it is suggested that the PKC-mediated phosphorylation is partly involved in AIKA.

  • PDF