• Title/Summary/Keyword: rRNA synthesis

Search Result 135, Processing Time 0.023 seconds

Functional Analysis of the Invariant Residue G791 of Escherichia coli 16S rRNA

  • Song, Woo-Seok;Kim, Hong-Man;Kim, Jae-Hong;Sim, Se-Hoon;Ryou, Sang-Mi;Kim, Sang-Goo;Cha, Chang-Jun;Cunningham, Philip R.;Bae, Jee-Hyeon;Lee, Kang-Seok
    • Journal of Microbiology
    • /
    • v.45 no.5
    • /
    • pp.418-421
    • /
    • 2007
  • The nucleotide at position 791(G791) of E. coli 16S rRNA was previously identified as an invariant residue for ribosomal function. In order to characterize the functional role of G791, base substitutions were introduced at this position, and mutant ribosomes were analyzed with regard to their protein synthesis ability, via the use of a specialized ribosome system. These ribosomal RNA mutations attenuated the ability of ribosomes to conduct protein synthesis by more than 65%. A transition mutation (G to A) exerted a moderate effect on ribosomal function, whereas a transversion mutation (G to C or U) resulted in a loss of protein synthesis ability of more than 90%. The sucrose gradient profiles of ribosomes and primer extension analysis showed that the loss of protein-synthesis ability of mutant ribosomes harboring a base substitution from G to U at position 791 stems partially from its inability to form 70S ribosomes. These findings show the involvement of the nucleotide at position 791 in the association of ribosomal subunits and protein synthesis steps after 70S formation, as well as the possibility of using 16S rRNA mutated at position 791 for the selection of second-site revertants in order to identify ligands that interact with G791 in protein synthesis.

Functional Analysis of the Residue 789 in Escherichia coli 16S rRNA and Development of a Method to Select Second-site Revertants (Escherichia coli 16S rRNA의 789 염기의 기능분석 및 이차복귀돌연변이체 발췌를 위한 방법 개발)

  • Kim Jong-Myung;Go Ha-Young;Song Woo-Seok;Ryou Sang-Mi;Lee Kang-Seok
    • Korean Journal of Microbiology
    • /
    • v.42 no.2
    • /
    • pp.156-159
    • /
    • 2006
  • A base substitution was introduced at the position 789 in Escherichia coli 16S rRNA, which was previously identified as an invariant residue for ribosome function and the ability of the mutant ribosomes to translate chloramphenicol acetyltransfernse mRNA was measured by determining the degree of resistance to chloramphenicol of cells expressing these mutant ribosomes. As expected, mutant ribosomes containing a base sub-stitution at the position 789 showed significantly reduced protein-synthesis ability and to identify a functional role played by this residue in protein synthesis, we developed an efficient genetic method to select second-site revertants in 16S rRNA that restore protein-synthesis function to these mutant ribosomes.

Development of Genetic System for Isolation of SSU rRNA Mutants that Bypass SecM-Mediated Ribosome Stalling (SecM에서 유래한 접착펩타이드에 의한 라이보솜 정지를 우회하는 SSU rRNA 돌연변이체 발굴을 위한 유전학적 시스템 개발)

  • Ha, Hye-Jeong;Kim, Hong-Man;Yeom, Ji-Hyun;Lee, Kang-Seok
    • Korean Journal of Microbiology
    • /
    • v.44 no.4
    • /
    • pp.271-276
    • /
    • 2008
  • Ribosome stalling by nascent sticky peptide has been reported in several organisms across the kingdom. To test whether small subunit (SSU) rRNA is involved in this phenomenon, we developed a genetic system that utilized the specialized ribosome system to isolate SSU rRNA mutants that enable ribosomes to bypass the SecM-derived sticky peptide in protein synthesis. In this system, CAT-SecM mRNA, which encodes CAT protein containing the sticky peptide derived from SecM, is only translated by specialized ribosomes. These ribosomes were shown to transiently stall on CAT-SecM mRNA followed by the synthesis of the sticky peptide. Expression of specialized ribosomes resulted in the decreased steady-state level of CAT-SecM mRNA, which is consistent with a notion that ribosome stalling induces mRNA degradation. Isolation and characterization of SSU rRNA mutations using this genetic system that are sufficient to circumvent ribosome stalling induced by the SecM-derived sticky peptide will provide evidence of SSU rRNA function in mRNA cleavage.

The Regulation of Alpha-Amylase Synthesis in Bacillus subtilis

  • Won, Mi-Sun
    • Journal of Microbiology and Biotechnology
    • /
    • v.1 no.4
    • /
    • pp.256-260
    • /
    • 1991
  • In B. subtilis, $\alpha$-amylase synthesis is regulated by amyR located directly on the upstream of amyE. Three different amyR alleles have been reported, amyR1, amyR2 and amyR3. Strains bearing the gra-10 mutation which confers derepression for catabolite repression has GlongrightarrowA transition mutation at +5 of amyR1. S1 nuclease mapping demonstrated that transcription initiated at 8 bases downstream from the -10 region of putative E$\sigma^{A}$ promoter P1 in amyR1 and gra-10. In amyR2, the major transcription initiatd at the same place and the minor, 10 bases downstream from -10 of P2. The transcript from P2 contributed approximately 15-20% of total amyE mRNA. S1 nuclease protection experiment indicated that amyE mRNA levels corresponded to the rate of synthesis assumed by specific activities of $\alpha$-amylase in culture supernatants, suggesting that $\alpha$-amylase synthesis is regulated at the level of transcription.n.

  • PDF

Adenine, new anti-wrinkle agent.

  • Kim, Y. J.;Kim, Y. S.;S.Y. Eom;Kim, J. H.
    • Proceedings of the SCSK Conference
    • /
    • 2003.09a
    • /
    • pp.804-819
    • /
    • 2003
  • It has been known that adenine is a very important material in living cells. Because, adenine is a member of nucleotide base, so it takes part in DNA, RNA and ATP synthesis. There are many reports that adenine participated in ingredients, especially DNA, RNA, NADH and ATP, affect on the cell. As well adenosine, conjugated adenine to glycoside, was known to anti-wrinkle compound. But there is no report whether adenine shows a good effect on the skin, especially anti-wrinkle. So, in this study, we tested whether adenine affects cell proliferation, collagen synthesis, collagenase synthesis inhibition in human dermal fibroblasts. In addition, we performed clinical study with adenine cream. Cell proliferation effect was tested by MTT assay. Collagen and collagenase synthesis were measured by Immunoassay with ELISA kit. Clinical study was performed by IECK according to KFDA Functional Cosmetic method. The results of cell proliferation show that 10$^{-6}$ ~10$^{-8}$ % of adenine increases cell proliferation about 50 % compare with non-treated control. At 10$^{-7}$ ~10$^{-10}$ %, adenine increases type I collagen synthesis about 50%, decreases type I collagenase about 22% compare with non-treated control. The results of clinical study show that 0.05% adenine treated group reduces wrinkle significantly compare with placebo treated group. Therefore adenine may be a new anti-wrinkle candidate, through increases cell proliferation and collagen synthesis dramatically. And it decreases collagenase synthesis. So adenine could be used as a new anti-wrinkle agent.

  • PDF

Influence of Refeeding with Vitamin, Mineral and Fibre on Protein Synthesis and Messenger Ribonucleic Acid Content in the Liver and Muscle of Fasted Chicks

  • Aman Yaman, M.;Kita, K.;Pinontoan, R.;Okumura, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.5
    • /
    • pp.545-549
    • /
    • 1998
  • The influence of refeeding with either vitamin, mineral, fibre of water on protein synthesis and mRNA content in the liver and breast muscle of fasted chicks was investigated. At 15 d of age, chicks were fasted for 2 d and then refed either vitamin, mineral, fibre or water. The fractional synthesis rate (FSR) of protein was measured after 30 min of refeeding by using a large dose injection of L - 2, $6[^3H]$ phenylalanine. In the liver, FSR was reduced by fasting and tended to increase but not significantly by refeeding with vitamin or mineral. FSR was not affected by refeeding with fibre or water. There was no influence of fasting and refeeding on ribosomal capacity (the RNA : protein ratio) and ribosomal efficiency (total protein synthesised per total RNA). The absolute synthesis rate (ASR) of liver protein and hepatic mRNA content were reduced by fasting and unchanged by refeeding. In the muscle, FSR, ASR and mRNA content were significantly decreased by fasting and not recovered by refeeding with either vitamin, mineral, fibre or water. It concluded that vitamin, mineral, fibre and water have little capacity to stimulate liver and muscle protein synthesis reduced by fasting.

Functional Analysis of the Residues C770 and G771 of E. coli 16S rRNA Implicated in Forming the Intersubunit Bridge B2c of the Ribosome

  • Kim, Hong-Man;Yeom, Ji-Hyun;Ha, Hye-Jung;Kim, Jong-Myung;Lee, Kang-Seok
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.7
    • /
    • pp.1204-1207
    • /
    • 2007
  • Structural analyses have shown that nucleotides at the positions 770 and 771 of Escherichia coli 16S rRNA are implicated in forming one of highly conserved intersubunit bridges of the ribosome, B2c. To examine a functional role of these residues, base substitutions were introduced at these positions and mutant ribosomes were analyzed for their protein synthesis ability using a specialized ribosome system. The results showed requirement of a pyrimidine at the position 770 for ribosome function regardless of the nucleotide identity at the position 771. Sucrose gradient profiles of ribosomes revealed that the loss of protein-synthesis ability of mutant ribosome bearing a base substitution from C to G at the position 770 stems from its inability to form 70S ribosomes. These findings indicate involvement of nucleotide at the position 770, not 771, in ribosomal subunit association and provide a useful rRNA mutation that can be used as a target to investigate the physical interaction between 16S and 23S rRNA.

Effects of FIS Protein on rnpB Transcription in Escherichia coli

  • Choi, Hyun-Sook;Kim, Kwang-sun;Park, Jeong Won;Jung, Young Hwan;Lee, Younghoon
    • Molecules and Cells
    • /
    • v.19 no.2
    • /
    • pp.239-245
    • /
    • 2005
  • Factor for inversion stimulation (FIS), the Escherichia coli protein, is a positive regulator of the transcription of genes that encode stable RNA species, such as rRNA and tRNA. Transcription of the rnpB gene encoding M1 RNA, the catalytic subunit of E. coli RNase P, rapidly declines under stringent conditions, as does that of other stable RNAs. There are multiple putative FIS binding sites upstream of the rnpB promoter. We tested whether FIS binds to these sites, and if so, how it affects rnpB transcription. In vitro binding assays revealed specific binding of FIS to multiple sites in the rnpB promoter region. Interestingly, FIS bound not only to the upstream region of the promoter, but also to the region from +4 to +18. FIS activated rnpB transcription in vitro, but the level of activation was much lower than that of the rrnB promoter for rRNA. We also examined the effects of FIS on rnpB transcription in vivo using isogenic $fis^+$ and $fis^-$ strains. rnpB transcription was higher in the $fis^-$ than the $fis^+$ cells during the transitions from lag to exponential phase, and from exponential to stationary phase.

Phylogenetic Analysis of Pleurotus Species Based on the Nuclear SSU rRNA Sequences (Phylogenetic Analysis of Pleurotus Species Based on the Nuclear SSU rRNA Sequences)

  • Jeong, Jae Hun;Kim, Eun Gyeong;No, Jeong Hye
    • Journal of Microbiology
    • /
    • v.34 no.1
    • /
    • pp.37-37
    • /
    • 1996
  • The internal regions of nuclear small subunit rRNA from 6 plaeurotus species and 5 Pleurotus ostreatus strains were amplified by PCR and sequenced. The DNA sequences of 8 Pleurotus strains (P. ostreatus NFFA2, NFFA4501, NFFA4001, KFFA4001, KFCC11635, P florida, P. florida, P. sajor-cuju, P. pulmonarius, and P. spodoleucus) were idential, but P. cornucopiae differed from them in two bases out of 605 bases. However, p[hylogenetic analysis of the sequences by DNA-distance matrix and UPGMA methods showed that P. ostreatus NFFA2m1 and NFFA2m2, known as mutants of P. ostreatus NFFA2, belonged to anther group of Basidiomycotina, which is close to the genus Auricularia. The difference of the SSU rDNA sequences of P. cornucopiae from other Pleurotus species tested corresponds to the difference of mitochondrial plasmid type present in Pleurotus species as observed by Kim et al. (1993, Korean J. Microbiol. 31, 141-147).ishement of silencing at the HMR/hsp82 locus can occur in G1-arrested cells. Cell cycle arrest at G1 phase was achieved by treatment of early log a cell cultures with .alpha.-factor mating pheromone, which induces G1 arrest. The result suggests that passage through S phase (and therefore DNA replication) is nor required for re-establishing silencer-mediated repression at the HMNRa/HSP82 locus. Finally, to test whether de nono protein synthesis is required for re-establishment of silencer-mediated repression, cells were pretreated with cycloheximide (500 /.mu.g/ml) 120 min. It was apparent that inhibiting protein synthesis delays, but does not prevent, re-establishment of silencer-mediated repression. Altogether, these results indicate that re-establishment of silencer-mediated repression is not dependent on the DNA replication and has no requirement for protein synthesis.

Functional Analysis and Selection of Second-site Revertant of Escherichia coli 16S rRNA of C770G (Escherichia coli 16S rRNA 상의 770 위치에 염기치환을 가진 변이체 리보솜의 단백질 합성 능력을 회복시키는 이차복귀돌연변이체의 발췌)

  • Ha, Hye-Jeong;Ryou, Sang-Mi;Lee, Kang-Seok;Jeon, Che-Ok
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.1
    • /
    • pp.93-96
    • /
    • 2011
  • It has been shown that a nucleotide substitution at position 770 in Escherichia coli 16S rRNA, which is implicated in forming the evolutionary conserved B2c intersubunit bridge, has a detrimental effect on ribosome function. In order to isolate second-site revertants that complement ribosomes containing C770G, we performed a random mutagenesis of the 16S rRNA gene and selected clones that could produce more CAT protein translated by specialized ribosome. One of the clones contained two nucleotide substitutions at positions 569 and 904 (C569G and U904C) and these mutations partially complemented the loss of protein-synthesis ability caused by C770G. Further studies using the isolated revertant will provide information about which part of 16S rRNA is interacting with C770 and the consequence of the structure formed by these interactions in the process of protein synthesis.