• 제목/요약/키워드: r-ideal

검색결과 679건 처리시간 0.024초

AN EXTENSION OF ANNIHILATING-IDEAL GRAPH OF COMMUTATIVE RINGS

  • Kerahroodi, Mahtab Koohi;Nabaei, Fatemeh
    • 대한수학회논문집
    • /
    • 제35권4호
    • /
    • pp.1045-1056
    • /
    • 2020
  • Let R be a commutative ring with unity. The extension of annihilating-ideal graph of R, $^{\bar{\mathbb{AG}}}$(R), is the graph whose vertices are nonzero annihilating ideals of R and two distinct vertices I and J are adjacent if and only if there exist n, m ∈ ℕ such that InJm = (0) with In, Jm ≠ (0). First, we differentiate when 𝔸𝔾(R) and $^{\bar{\mathbb{AG}}}$(R) coincide. Then, we have characterized the diameter and the girth of $^{\bar{\mathbb{AG}}}$(R) when R is a finite direct products of rings. Moreover, we show that $^{\bar{\mathbb{AG}}}$(R) contains a cycle, if $^{\bar{\mathbb{AG}}}$(R) ≠ 𝔸𝔾(R).

A NOTE ON MINIMAL PRIME IDEALS

  • Mohammadi, Rasul;Moussavi, Ahmad;Zahiri, Masoome
    • 대한수학회보
    • /
    • 제54권4호
    • /
    • pp.1281-1291
    • /
    • 2017
  • Let R be a strongly 2-primal ring and I a proper ideal of R. Then there are only finitely many prime ideals minimal over I if and only if for every prime ideal P minimal over I, the ideal $P/{\sqrt{I}}$ of $R/{\sqrt{I}}$ is finitely generated if and only if the ring $R/{\sqrt{I}}$ satisfies the ACC on right annihilators. This result extends "D. D. Anderson, A note on minimal prime ideals, Proc. Amer. Math. Soc. 122 (1994), no. 1, 13-14." to large classes of noncommutative rings. It is also shown that, a 2-primal ring R only has finitely many minimal prime ideals if each minimal prime ideal of R is finitely generated. Examples are provided to illustrate our results.

TRACE PROPERTIES AND INTEGRAL DOMAINS, III

  • Lucas, Thomas G.;Mimouni, Abdeslam
    • 대한수학회보
    • /
    • 제59권2호
    • /
    • pp.419-429
    • /
    • 2022
  • An integral domain R is an RTP domain (or has the radical trace property) (resp. an LTP domain) if I(R : I) is a radical ideal for each nonzero noninvertible ideal I (resp. I(R : I)RP = PRP for each minimal prime P of I(R : I)). Clearly each RTP domain is an LTP domain, but whether the two are equivalent is open except in certain special cases. In this paper, we study the descent of these notions from particular overrings of R to R itself.

NONADDITIVE STRONG COMMUTATIVITY PRESERVING DERIVATIONS AND ENDOMORPHISMS

  • Zhang, Wei;Xu, Xiaowei
    • 대한수학회보
    • /
    • 제51권4호
    • /
    • pp.1127-1133
    • /
    • 2014
  • Let S be a nonempty subset of a ring R. A map $f:R{\rightarrow}R$ is called strong commutativity preserving on S if [f(x), f(y)] = [x, y] for all $x,y{\in}S$, where the symbol [x, y] denotes xy - yx. Bell and Daif proved that if a derivation D of a semiprime ring R is strong commutativity preserving on a nonzero right ideal ${\rho}$ of R, then ${\rho}{\subseteq}Z$, the center of R. Also they proved that if an endomorphism T of a semiprime ring R is strong commutativity preserving on a nonzero two-sided ideal I of R and not identity on the ideal $I{\cup}T^{-1}(I)$, then R contains a nonzero central ideal. This short note shows that the conclusions of Bell and Daif are also true without the additivity of the derivation D and the endomorphism T.

ON QUASI-STABLE EXCHANGE IDEALS

  • Chen, Huanyin
    • 대한수학회지
    • /
    • 제47권1호
    • /
    • pp.1-15
    • /
    • 2010
  • We introduce, in this article, the quasi-stable exchange ideal for associative rings. If I is a quasi-stable exchange ideal of a ring R, then so is $M_n$(I) as an ideal of $M_n$(R). As an application, we prove that every square regular matrix over quasi-stable exchange ideal admits a diagonal reduction by quasi invertible matrices. Examples of such ideals are given as well.

ON STRONGLY QUASI PRIMARY IDEALS

  • Koc, Suat;Tekir, Unsal;Ulucak, Gulsen
    • 대한수학회보
    • /
    • 제56권3호
    • /
    • pp.729-743
    • /
    • 2019
  • In this paper, we introduce strongly quasi primary ideals which is an intermediate class of primary ideals and quasi primary ideals. Let R be a commutative ring with nonzero identity and Q a proper ideal of R. Then Q is called strongly quasi primary if $ab{\in}Q$ for $a,b{\in}R$ implies either $a^2{\in}Q$ or $b^n{\in}Q$ ($a^n{\in}Q$ or $b^2{\in}Q$) for some $n{\in}{\mathbb{N}}$. We give many properties of strongly quasi primary ideals and investigate the relations between strongly quasi primary ideals and other classical ideals such as primary, 2-prime and quasi primary ideals. Among other results, we give a characterization of divided rings in terms of strongly quasi primary ideals. Also, we construct a subgraph of ideal based zero divisor graph ${\Gamma}_I(R)$ and denote it by ${\Gamma}^*_I(R)$, where I is an ideal of R. We investigate the relations between ${\Gamma}^*_I(R)$ and ${\Gamma}_I(R)$. Further, we use strongly quasi primary ideals and ${\Gamma}^*_I(R)$ to characterize von Neumann regular rings.

SIMPLE VALUATION IDEALS OF ORDER 3 IN TWO-DIMENSIONAL REGULAR LOCAL RINGS

  • Noh, Sun-Sook
    • 대한수학회논문집
    • /
    • 제23권4호
    • /
    • pp.511-528
    • /
    • 2008
  • Let (R, m) be a 2-dimensional regular local ring with algebraically closed residue field R/m. Let K be the quotient field of R and $\upsilon$ be a prime divisor of R, i.e., a valuation of K which is birationally dominating R and residually transcendental over R. Zariski showed that there are finitely many simple $\upsilon$-ideals $m\;=\;P_0\;{\supset}\;P_1\;{\supset}\;{\cdots}\;{\supset}\;P_t\;=\;P$ and all the other $\upsilon$-ideals are uniquely factored into a product of those simple ones [17]. Lipman further showed that the predecessor of the smallest simple $\upsilon$-ideal P is either simple or the product of two simple $\upsilon$-ideals. The simple integrally closed ideal P is said to be free for the former and satellite for the later. In this paper we describe the sequence of simple $\upsilon$-ideals when P is satellite of order 3 in terms of the invariant $b_{\upsilon}\;=\;|\upsilon(x)\;-\;\upsilon(y)|$, where $\upsilon$ is the prime divisor associated to P and m = (x, y). Denote $b_{\upsilon}$ by b and let b = 3k + 1 for k = 0, 1, 2. Let $n_i$ be the number of nonmaximal simple $\upsilon$-ideals of order i for i = 1, 2, 3. We show that the numbers $n_{\upsilon}$ = ($n_1$, $n_2$, $n_3$) = (${\lceil}\frac{b+1}{3}{\rceil}$, 1, 1) and that the rank of P is ${\lceil}\frac{b+7}{3}{\rceil}$ = k + 3. We then describe all the $\upsilon$-ideals from m to P as products of those simple $\upsilon$-ideals. In particular, we find the conductor ideal and the $\upsilon$-predecessor of the given ideal P in cases of b = 1, 2 and for b = 3k + 1, 3k + 2, 3k for $k\;{\geq}\;1$. We also find the value semigroup $\upsilon(R)$ of a satellite simple valuation ideal P of order 3 in terms of $b_{\upsilon}$.

1-(2-) Prime Ideals in Semirings

  • Nandakumar, Pandarinathan
    • Kyungpook Mathematical Journal
    • /
    • 제50권1호
    • /
    • pp.117-122
    • /
    • 2010
  • In this paper, we introduce the concepts of 1-prime ideals and 2-prime ideals in semirings. We have also introduced $m_1$-system and $m_2$-system in semiring. We have shown that if Q is an ideal in the semiring R and if M is an $m_2$-system of R such that $\overline{Q}{\bigcap}M={\emptyset}$ then there exists as 2-prime ideal P of R such that Q $\subseteq$ P with $P{\bigcap}M={\emptyset}$.

GROUP ACTION ON INTUTIOISTIC FUZZY IDEALS OF RINGS

  • Lee, Dong-Soo;Park, Chul-Hwan
    • East Asian mathematical journal
    • /
    • 제22권2호
    • /
    • pp.239-248
    • /
    • 2006
  • Let G be a group acting on a ring R. We will define the group action of G on an intuitionsitic fuzzy set of R. We will introduce intuitionistic fuzzy G-prime ideals of a ring and we will prove that every intuitionistic fuzzy G-prime ideal is the largest G-invariant intuitionistic fuzzy ideal of R contained in the intuitionistic fuzzy prime ideal which is uniquely determined up to G-orbits.

  • PDF

ON THE STRUCTURE OF ZERO-DIVISOR ELEMENTS IN A NEAR-RING OF SKEW FORMAL POWER SERIES

  • Alhevaz, Abdollah;Hashemi, Ebrahim;Shokuhifar, Fatemeh
    • 대한수학회논문집
    • /
    • 제36권2호
    • /
    • pp.197-207
    • /
    • 2021
  • The main purpose of this paper is to study the zero-divisor properties of the zero-symmetric near-ring of skew formal power series R0[[x; α]], where R is a symmetric, α-compatible and right Noetherian ring. It is shown that if R is reduced, then the set of all zero-divisor elements of R0[[x; α]] forms an ideal of R0[[x; α]] if and only if Z(R) is an ideal of R. Also, if R is a non-reduced ring and annR(a - b) ∩ Nil(R) ≠ 0 for each a, b ∈ Z(R), then Z(R0[[x; α]]) is an ideal of R0[[x; α]]. Moreover, if R is a non-reduced right Noetherian ring and Z(R0[[x; α]]) forms an ideal, then annR(a - b) ∩ Nil(R) ≠ 0 for each a, b ∈ Z(R). Also, it is proved that the only possible diameters of the zero-divisor graph of R0[[x; α]] is 2 and 3.