• Title/Summary/Keyword: r-DNA

Search Result 3,666, Processing Time 0.028 seconds

The Effect of Antibiotics on the DNA Synthesis and Base Composition in Fungal Cells (진균류의 DNA 생합성 및 염기조성에 미치는 항생물질의 효과)

  • Park, Kyou-Yeon;Lee, Chong-Sam
    • The Korean Journal of Mycology
    • /
    • v.22 no.4
    • /
    • pp.366-377
    • /
    • 1994
  • The base composition of DNA of Aspergillus phoenicis, Rhizopus acidus and Candida albicans treated with cycloheximide and nalidixic acid during the culture was analyzed to compare with the control. The contents of base in the DNA were inhibited by cycloheximide, 20.4% of adenine, 43.1% of thymine, 40.9% of cytosine, 35.3% of guanine, 32.2% of purine, and 42.7% of pyrimidine for A. phoenicis. In R. acidus, 34.2% of adenine, 42.1% of thymine, 38.0% of cytosine, 18.1% of guanine, 24.1% of purine and 40.0% of pyrimidine were depressed by cycloheximide. In the antibiotic treatment of C. albicans, 58.3% of adenine, 58.5% of thymine, 58.1% of cytosine, 42.4% of guanine, 46.8% of purine and 58.8% of pyrimidine were inhibited to compare with the control. The nalidixic acid treatments were showed that, in A. phoenicis 41.6% of adenine, 47.1% of thymine, 59.3% of cytosine, 46.3% of guanine, 45.6% of purine and 57.2% of pyrimidine were inhibited. When R. acidus was treated with nalidixic acid, 59.1% of adenine, 54.7% of thymine, 35.3% of cytosine, 37.4% of guanine, 45.9% of purine and 44.9% of pyrimidine decreased. In treatment of nalidixic acid, the content of DNA was depressed 60.1% of adenine, 68.6% of thymine, 60.7% of cytosine, 40.0% of guanine, 45.8% of purine and 63.5% of pyrimidine for C. albicans In the DNA synthesis of three fungal cells, cycloheximide and nalidixic acid treatments were analyzed obviously that the biosynthesis of pyrimidine was depressed than that of purine. Therefore, it was showed that the DNA contents in the various fungal cells were inhibited remarkably in nalidixic acid treatment than cycloheximide.

  • PDF

Flooding Stress-Induced Glycine-Rich RNA-Binding Protein from Nicotiana tabacum

  • Lee, Mi-Ok;Kim, Keun Pill;Kim, Byung-gee;Hahn, Ji-Sook;Hong, Choo Bong
    • Molecules and Cells
    • /
    • v.27 no.1
    • /
    • pp.47-54
    • /
    • 2009
  • A cDNA clone for a transcript preferentially expressed during an early phase of flooding was isolated from Nicotiana tabacum. Nucleotide sequencing of the cDNA clone identified an open reading frame that has high homology to the previously reported glycine-rich RNA-binding proteins. The open reading frame consists of 157 amino acids with an N-terminal RNA-recognition motif and a C-terminal glycine-rich domain, and thus the cDNA clone was designated as Nicotiana tabaccum glycine-rich RNA-binding protein-1 (NtGRP1). Expression of NtGRP1 was upregulated under flooding stress and also increased, but at much lower levels, under conditions of cold, drought, heat, high salt content, and abscisic acid treatment. RNA homopolymer-binding assay showed that NtGRP1 binds to all the RNA homopolymers tested with a higher affinity to poly r(G) and poly r(A) than to poly r(U) and poly r(C). Nucleic acid-binding assays showed that NtGRP1 binds to ssDNA, dsDNA, and mRNA. NtGRP1 suppressed expression of the fire luciferase gene in vitro, and the suppression of luciferase gene expression could be rescued by addition of oligonucleotides. Collectively, the data suggest NtGRP1 as a negative modulator of gene expression by binding to DNA or RNA in bulk that could be advantageous for plants in a stress condition like flooding.

Centromere Repeat DNA Originated from Brassica rapa is Detected in the Centromere Region of Raphanus sativus Chromosomes

  • Hwang, Yoon-Jung;Yu, Hee-Ju;Mun, Jeong-Hwan;Bok, Kwang;Park, Beom-Seok;Lim, Ki-Byung
    • Horticultural Science & Technology
    • /
    • v.30 no.6
    • /
    • pp.751-756
    • /
    • 2012
  • Fluorescence in situ hybridization (FISH) is a powerful tool for the detection of DNA sequences in the specific region of the chromosomes. As well as for the integrated physical mapping, FISH karyotype analysis has to be preceded. Karyotype of Raphanus sativus 'Wonkyo 10039' was analyzed by a dual-color FISH technique; using various repetitive DNA probes, including 5S rDNA, 45S rDNA, and centromere retrotransposon. The length of the somatic metaphase chromosome ranged from 1.35 to $2.06{\mu}m$ with a total length of $15.29{\mu}m$. The chromosome complements comprised of eight pairs of metacentrics and one pair of submetacentric. Bleached DAPI Band analysis revealed a heterochromatin region, covering 28.6% to 50.4% each chromosomes. 5S and 45S rDNA sequences were located on two and three pairs of chromosomes, respectively. The centromere retrotransposon of Brassica (CRB) is a major component in Brassica related species that has been maintained as a common centromere component. CRB signals were detected on the centromere and pericentromeric region of R. sativus 'Wonkyo 10039' and three basic Brassica species (B. rapa, B. nigra, and B. oleracea). These results will provide a valuable background for physical mapping and elucidation of the evolutionary relationship among the Brassica related species.

Effect of Glasswort (Salicornia herbacea L.) on Microbial Community Variations in the Vinegar-making Process and Vinegar Characteristics

  • Seo, Ha-Na;Jeon, Bo-Young;Yun, A-Ram;Park, Doo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.9
    • /
    • pp.1322-1330
    • /
    • 2010
  • Three types of nuruk were made from rice, wheat, and a rice-glasswort (6:4) mixture. Nuruk, makgeolli, and vinegar were manufactured with rice nuruk (RN), wheat nuruk (WN), and rice-glasswort nuruk (RGN). The variable region of 18S or 16S rDNA amplified with genomic DNA extracted directly from nuruk-, makgeolli-, and vinegar-making cultures was analyzed via temperature gradient gel electrophoresis (TGGE). The sequence of the 18S rDNA variable region extracted from the TGGE gel for nuruk was 99% homologous with Aspergillus sp. and that for the makgeolli-making culture was 99% homologous with Saccharomyces sp. and Saccharomycodes sp. The sequence of the 16S rDNA variable region extracted from TGGE gel for the vinegar-making culture was 98% homologous, primarily with the Acetobacter sp. The eukaryotic and prokaryotic diversities in the nuruk-, makgeolli-, and vinegar-making cultures was not significantly altered by the addition of glasswort. Prokaryotic diversity was higher than eukaryotic diversity in the nuruk, but eukaryotic diversity was higher than prokaryotic diversity in the makgeolli-making culture, on the basis of the TGGE patterns. No 18S rDNA was amplified from the DNA extracted from the vinegar-making culture. The diversity of the microbial community in the process from nuruk to vinegar was slightly affected by the type of raw material utilized for nuruk-making. The saccharifying activity and ethanol productivity of nuruk, polyphenol content in makgeolli, and acetic acid and polyphenol content in the vinegar were increased as a result of the addition of glasswort. In conclusion, the glasswort may be not simply an activator for the growth of microorganisms during the fermentation of nuruk, makgeolli, or vinegar, but also a nutritional supplement that improves the quality of vinegar.

Identification of DNA Variations Using AFLP and SSR Markers in Soybean Somaclonal Variants

  • Lee, Suk-Ha;Jung, Hyun-Soo;Kyujung Van;Kim, Moon-Young
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.1
    • /
    • pp.69-72
    • /
    • 2004
  • Somaclonal variation, defined as phenotypic and genetic variations among regenerated plants from a parental plant, could be caused by changes in chromosome structure, single gene mutation, cytoplasm genetic mutation, insertion of transposable elements, and DNA methylation during plant regeneration. The objective of this study was to evaluate DNA variations among somaclonal variants from the cotyledonary node culture in soybean. A total of 61 soybean somaclones including seven $\textrm{R}_1$ lines and seven $\textrm{R}_2$ lines from Iksannamulkong as well as 27 $\textrm{R}_1$ lines and 20 $\textrm{R}_2$ lines from Jinju 1 were regenerated by organogenesis from the soybean cotyledonary node culture system. Field evaluation revealed no phenotypic difference in major agronomic traits between somaclonal variants and their wild types. AFLP and SSR analyses were performed to detect variations at the DNA level among somaclonal variants of two varieties. Based on AFLP analysis using 36 primer sets, 17 of 892 bands were polymorphic between Iksannamulkong and its somaclonal variants and 11 of 887 bands were polymorphic between Jinju 1 and its somaclonal variants, indicating the presence of DNA sequence change during plant regeneration. Using 36 SSR markers, two polymorphic SSR markers were detected between Iksannamulkong and its somaclonal variants. Sequence comparison amplified with the primers flanking Satt545 showed four additional stretches of ATT repeat in the variant. This suggests that variation at the DNA level between somaclonal variants and their wild types could provide basis for inducing mutation via plant regeneration and broadening crop genetic diversity.

Specific and Sensitive Detection of Venturia nashicola, the Scab Fungus of Asian Pears, by Nested PCR

  • Koh, Hyun Seok;Sohn, San Ho;Lee, Young Sun;Koh, Young Jin;Song, Jang Hoon;Jung, Jae Sung
    • The Plant Pathology Journal
    • /
    • v.29 no.4
    • /
    • pp.357-363
    • /
    • 2013
  • The fungus Venturia nashicola is the causal agent of scab on Asian pears. For the rapid and reliable identification as well as sensitive detection of V. nashicola, a PCR-based technique was developed. DNA fingerprints of three closely related species, V. nashicola, V. pirina, and V. inaequalis, were obtained by random amplified polymorphic DNA (RAPD) analysis. Two RAPD markers specific to V. nashicola were identified by PCR, after which two pairs of sequence characterized amplified region (SCAR) primers were designed from the nucleotide sequences of the markers. The SCAR primer pairs, designated as D12F/D12R and E11F/E11R, amplified 535-bp and 525-bp DNA fragments, respectively, only from genomic DNA of V. nashicola. The specificity of the primer sets was tested on strains representing three species of Venturia and 20 fungal plant pathogens. The nested PCR primer pair specific to V. nashicola was developed based on the sequence of the species-specific 525-bp DNA fragment amplified by primer set E11F/E11R. The internal primer pair Na11F/Na11R amplified a 235-bp fragment from V. nashicola, but not from any other fungal species tested. The nested PCR assay was sensitive enough to detect the specific fragment in 50 fg of V. nashicola DNA.

Phylogenetic Analysis of Agaricus blazei and Related Taxa by Comparing the Sequences of Internal Transcribed Spacers and 5.8S rDNA (Internal Transcribed Spacer와 5.8S ribosomal DNA의 염기서열 분석에 의한 Agaricus blazei와 근연종에 대한 계통분류학적인 연구)

  • 김기영;하명규;이태호;이재동
    • Korean Journal of Microbiology
    • /
    • v.35 no.3
    • /
    • pp.180-184
    • /
    • 1999
  • Molecular spslemaucs of Agaricus species was investigated on the base of the sequences of the internal transcribed spaceriITS) regions in ribosomal DNA (rDNA). The sequences of the ITS region in 5 species and two group of Agaricus genus were resolved. In the phylogenetic trees. the species generally divided inlo two subclusters, refered to here as the group I and group 11. The group I consisted of Agaricus blazei ATCC 76739, Agarictrs blazei species cultivated in Korean hmings. Ago/-icus anmensis IMSNU 32049 and Agaricus can~pestris VPI-OKM 25665. Between Agaricus blazei NCC 76739 and the Agaricus blazei species cultivated in Korean farmings had the variation in lhe 5 nucleotide on the ITS regions. These varieties were presumed the variation by the geographic and cultivated conditions. In addition the subgroup of group I was formed by Agaricus arvensis LMSNU 32049 and Agaricus carnpests VPI-OKM 25665. The group IT included Agnrictrs bispoms CH 3004 and Agaricus pocillotor DUKE-J 173.

  • PDF

Characterization of Plants Induced by in vitro Culture of Leaf Blade-segments in a Variegated Tobacco (Nicotiana tabacum L. cv. BY-4) (Variegated 담배 (Nicotiana tabacum L. cv. BY-4)의 잎 절편 배양에 따른 재생 식물체의 특성)

  • 배창휴;이효연
    • Korean Journal of Plant Tissue Culture
    • /
    • v.26 no.4
    • /
    • pp.245-250
    • /
    • 1999
  • Plantlets derived from leaf blade-segment culture of a variegated tobacco (Nicotiana tabacum L. cv. BY-4) that was induced by a heavy-ion ($^{14}N$) beam irradiation to proembryos, were characterized. When explants from both white and green sections of leaves of the variegated plant were cultured on MS medium containing 0.1 mg/L NAA and 1.0 mg/L BAP, the white sections yielded only white shoots, whereas the green sections generated approximately 47.2% green, 37.4% white and 15.4% variegated shoots. In the F1 generation of a green tobacco derived from the leaf blade-segment culture, the segregation ratio of green to white was 1,651:54. Furthermore, reciprocal crosses showed that all of the progenies was green, indicating that the variegation is not maternally inherited. When the signal intensity of photosynthesis genes was determined by DNA gel blot analysis using the variegated leaves derived from green sections of variegated leaves, there were more of the rbcL, psbA, 16S rDNA and 23S rDNA chloroplast genes in the white sections than the chloroplast genes in wild type and green sections of the variegated plants.

  • PDF