• Title/Summary/Keyword: quorum sensing inhibition

Search Result 27, Processing Time 0.026 seconds

Surface characterization and evaluation of biofouling inhibition of reverse osmosis membranes coated with Epigallocatechin gallate(EGCG)/vanillin (EGCG/바닐린 코팅 RO분리막의 표면 특성과 미생물막 억제능)

  • Jung, Jaehyun;Kim, Youngjin;Nam, Haewook;Kim, Yunjung;Lee, Eunsu;Lee, Younil;Kweon, Jihyang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.6
    • /
    • pp.713-723
    • /
    • 2014
  • Biofouling in brackish water reverse osmosis (RO) membranes still needs extensive research to understand cause and mechanism and to obtain methods for reduction of its impact on RO applications. Natural compounds with biofilm formation inhibitory properties are being investigated. Two compounds, vanillin and Epigallocatechin gallate (EGCG), were selected due to their great potential on biofilm formation inhibition. Vanillin shows inhibition on quorum sensing mechanisms of biofilm formation. EGCG has potential to inactivate microbial activity. The two compounds were incorporated in typical polyamide reverse osmosis membranes and evaluated on flux behaviours and biofilm formation potential. The surface properties of membrane coated with vanillin were changed tremendously compared to those with EGCG. As a result, the flux was reduced substantially. The biofilm formation seems hindered with EGCG coated membranes compared to the virgin membranes. More research is needed to optimize coating methods applicable to RO membranes and to enhance biofouling reduction.

Inhibition of Microbial Quorum Sensing Mediated Virulence Factors by Pestalotiopsis sydowiana

  • Parasuraman, Paramanantham;Devadatha, B;Sarma, V. Venkateswara;Ranganathan, Sampathkumar;Ampasala, Dinakara Rao;Reddy, Dhanasekhar;Kumavath, Ranjith;Kim, In-Won;Patel, Sanjay K.S.;Kalia, Vipin Chandra;Lee, Jung-Kul;Siddhardha, Busi
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.4
    • /
    • pp.571-582
    • /
    • 2020
  • Quorum sensing (QS)-mediated infections cause severe diseases in human beings. The control of infectious diseases by inhibiting QS using antipathogenic drugs is a promising approach as antibiotics are proving inefficient in treating these diseases. Marine fungal (Pestalotiopsis sydowiana PPR) extract was found to possess effective antipathogenic characteristics. The minimum inhibitory concentration (MIC) of the fungal extract against test pathogen Pseudomonas aeruginosa PAO1 was 1,000 ㎍/ml. Sub-MIC concentrations (250 and 500 ㎍/ml) of fungal extract reduced QS-regulated virulence phenotypes such as the production of pyocyanin, chitinase, protease, elastase, and staphylolytic activity in P. aeruginosa PAO1 by 84.15%, 73.15%, 67.37%, 62.37%, and 33.65%, respectively. Moreover, it also reduced the production of exopolysaccharides (74.99%), rhamnolipids (68.01%), and alginate (54.98%), and inhibited the biofilm formation of the bacteria by 90.54%. In silico analysis revealed that the metabolite of P. sydowiana PPR binds to the bacterial QS receptor proteins (LasR and RhlR) similar to their respective natural signaling molecules. Cyclo(-Leu-Pro) (CLP) and 4-Hydroxyphenylacetamide (4-HPA) were identified as potent bioactive compounds among the metabolites of P. sydowiana PPR using in silico approaches. The MIC values of CLP and 4-HPA against P. aeruginosa PAO1 were determined as 250 and 125 ㎍/ml, respectively. All the antivirulence assays were conducted at sub-MIC concentrations of CLP (125 ㎍/ml) and 4-HPA (62.5 ㎍/ml), which resulted in marked reduction in all the investigated virulence factors. This was further supported by gene expression studies. The findings suggest that the metabolites of P. sydowiana PPR can be employed as promising QS inhibitors that target pathogenic bacteria.

Antibacterial Mode of Action of Cinnamomum verum Bark Essential Oil, Alone and in Combination with Piperacillin, Against a Multi-Drug-Resistant Escherichia coli Strain

  • Yap, Polly Soo Xi;Krishnan, Thiba;Chan, Kok-Gan;Lim, Swee Hua Erin
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.8
    • /
    • pp.1299-1306
    • /
    • 2015
  • This study aims to investigate the mechanism of action of the cinnamon bark essential oil (CB), when used singly and also in combination with piperacillin, for its antimicrobial and synergistic activity against beta-lactamase TEM-1 plasmid-conferred Escherichia coli J53 R1. Viable count of bacteria for this combination of essential oil and antibiotic showed a complete killing profile at 20 h and further confirmed its synergistic effect by reducing the bacteria cell numbers. Analysis on the stability of treated cultures for cell membrane permeability by CB when tested against sodium dodecyl sulfate revealed that the bacterial cell membrane was disrupted by the essential oil. Scanning electron microscopy observation and bacterial surface charge measurement also revealed that CB causes irreversible membrane damage and reduces the bacterial surface charge. In addition, bioluminescence expression of Escherichia coli [pSB1075] and E. coli [pSB401] by CB showed reduction, indicating the possibility of the presence of quorum sensing (QS) inhibitors. Gas-chromatography and mass spectrometry of the essential oil of Cinnamomum verum showed that trans-cinnamaldehyde (72.81%), benzyl alcohol (12.5%), and eugenol (6.57%) were the major components in the essential oil. From this study, CB has the potential to reverse E. coli J53 R1 resistance to piperacillin through two pathways; modification in the permeability of the outer membrane or bacterial QS inhibition.

Inhibition of Quorum Sensing and Biofilm Formation by Synthetic Quorum Signal Analogues in Pseudomonas aeruginosa (합성된 쿼럼 신호 유사 물질에 의한 녹농균 쿼럼 센싱 및 생물막 형성의 제어)

  • Kim, Soo-Kyoung;Kim, Cheol-Jin;Yoon, Je-Yong;Lee, Joon-Hee
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.1
    • /
    • pp.29-36
    • /
    • 2011
  • Pseudomonas aeruginosa is an opportunistic pathogen that causes various infections on urinary track, cornea, respiratory track, and burn wound site, and mainly relies on quorum sensing (QS) for its virulence. To control the infectivity of P. aeruginosa, we previously synthesized the structural analogues of a major QS signal, N-3-oxododecanoyl homoserine lactone (3OC12-HSL) to use as a QS inhibitor. Two of them (5b and 5f) had been confirmed to have an inhibitory effect on LasR, a major QS signal receptor of P. aeruginosa in the screening by the recombinant Escherichia coli reporter. To further evaluate these compounds, we tested their efficacy to control the QS and virulence of P. aeruginosa. Unlike the result from E. coli reporter, both 5b and 5f failed to affect the LasR activity in P. aeruginosa, but instead they selectively affected the activity of QscR, another 3OC12-HSL receptor of P. aeruginosa. Interestingly, their effect on QscR was complex and opposite to what we obtained with E. coli system. Both 5b and 5f enhanced the QscR activity at the low concentration range (< 10 ${\mu}m$), but high concentration of 5f (${\approx}$1 mM) strongly inhibited QscR. While 5b and 5f didn't affect the production of proteases, the key virulence factor, they significantly reduced the biofilm formation that is important in mediating chronic infections. Especially, 5f inhibited the initial attachment of P. aeruginosa, rather than the biofilm maturation. Based on our results, we suggest that 5f can be applied for an anti-biofilm agent without increasing virulence of P. aeruginosa.

Inhibitory Effects of Stewartia koreana Extracts on Pseudomonas aeruginosa Biofilm Formation (노각나무 추출물이 Pseudomonas aeruginosa의 바이오필름 형성에 미치는 영향)

  • Sang Gyun Lee;Hye Soo Kim;Soo Jeong Cho
    • Journal of Life Science
    • /
    • v.33 no.11
    • /
    • pp.936-943
    • /
    • 2023
  • This study was conducted to investigate the potential of Stewartia koreana as anti-microbial materials. The branches, stems and leaves of S. koreana were extracted into 70% ethanol and their antibacterial activity against P. aeruginosa was confirmed. The leaf, branch and stems extracts (1 mg/disc) showed the antibacterial activity against P. aeruginosa and leaf extracts showed higher antibacterial activities than those from branch extracts. The MIC against P. aeruginosa was 0.8 mg/ml and showed bacteriostatic action. The inhibitory effects of extract on biofilm formation and gene expression related to biofilm formation of P. aeruginosa was determined by biofilm biomass staining, SEM and qRT-PCR analysis. The biofilm biomass and cell growth of P. aeruginosa in the cultures treated with 0.2~2.0 mg/ml of S. koreana leaf extracts were significantly decreased in a concentration-dependent manner. We observed that the extract had an inhibitory effect on the formation of P. aeruginosa biofilms at concentrations of 0.8 mg/ml by SEM. qRT-PCR analysis showed that the lasI and rh1I gene expression associated to quorum sensing (QS) in the cultures treated with 0.2~2.0 mg/ml of S. koreana leaf extracts were suppressed in a concentration-dependent manner. Based on the above results, it can be concluded that S. koreana leaf extracts can be used as anti-microbial material derived from natural materials, as demonstrated by the antibacterial action and inhibition of biofilm formation of P. aeruginosa by QS inhibition.

Solid Phase Synthesis of N-(3-hydroxysulfonyl)-L-homoserine Lactone Derivatives and their Inhibitory Effects on Quorum Sensing Regulation in Vibrio harveyi (고체상 합성법에 의해 합성된 N-(3-hydroxysulfonyl)-L-homoserine Lactone 유사체들의 Vibrio harveyi 쿼럼 센싱에 대한 저해 효과)

  • Kim, Cheol-Jin;Park, Hyung-Yeon;Kim, Jae-Eun;Park, Hee-Jin;Lee, Bon-Su;Choi, Yu-Sang;Lee, Joon-Hee;Yoon, Je-Yong
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.3
    • /
    • pp.248-257
    • /
    • 2009
  • The inhibitors against Vibrio harveyi quorum sensing (QS) signaling were developed by modifying the molecular structure of the major signal, N-3-hydroxybutanoyl-L-homoserine lactone (3-OH-$C_4$-HSL). A series of structural derivatives, N-(3-hydroxysulfonyl)-L-homoserine lactones (HSHLs) were synthesized by the solid-phase organic synthesis method. The in vivo QS inhibition by these compounds was measured by a bioassay system using the V. harveyi bioluminescence, and all showed significant inhibitory effects. To analyze the interaction between these compounds and LuxN, a 3-OH-$C_4$-HSL receptor protein of V. harveyi, we tentatively determined the putative signal binding domain of LuxN based on the sequence homology with other acyl-HSL binding proteins, and predicted the partial 3-D structure of the putative signal binding domain of LuxN by using ORCHESTRA program, and further estimated the binding poses and energies (docking scores) of 3-OH-$C_4$-HSL and HSHLs within the domain. In comparison of the result from this modeling study with that of in vivo bioassay, we suggest that the in silica interpretation of the interaction between ligands and their receptor proteins can be a valuable way to develop better competitive inhibitors, especially in the case that the structural information of the protein is limited.