• Title/Summary/Keyword: quorum quenching

Search Result 23, Processing Time 0.022 seconds

Classification of Bacillus Beneficial Substances Related to Plants, Humans and Animals

  • Mongkolthanaruk, Wiyada
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.12
    • /
    • pp.1597-1604
    • /
    • 2012
  • Genus Bacillus is a spore-forming bacterium that has unique properties in cell differentiation, allowing the forming of spores in stress conditions and activated in the vegetative cell, with suitable environments occurring during the life cycle acting as a trigger. Their habitat is mainly in soil; thus, many species of Bacillus are associated with plants as well as rhizosphere bacteria and endophytic bacteria. Signal transduction is the principal mechanism of interactions, both within the cell community and with the external environment, which provides the subsequent functions or properties for the cell. The antimicrobial compounds of Bacillus sp. are potentially useful products, which have been used in agriculture for the inhibition of phytopathogens, for the stimulation of plant growth, and in the food industry as probiotics. There are two systems for the synthesis of these substances: nonribosomal synthesis of cyclic lipopeptides (NRPS) and polyketides (PKS). For each group, the structures, properties, and genes of the main products are described. The different compounds described and the way in which they co-exist exhibit the relationship of Bacillus substances to plants, humans, and animals.

Effects of Acylase Treatment Episodes on Multispecies Biofilm Development (Acylase의 처리 시기 및 기간이 다종 생물막 형성에 미치는 영향)

  • Ji Won, Lee;So-Yeon, Jeong;Tae Gwan, Kim
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.4
    • /
    • pp.548-556
    • /
    • 2022
  • Acylases can have a significant effect on biofilm formation owing to their quorum quenching activity. In this study, we investigated the effects of acylase treatment episodes on multispecies biofilm development. A consortium composed of 9 species belonging to different genera was allowed to form biofilms for 5 days under various treatment episodes (different treatment periods, 1, 2, 3, or 4 days; and two application timings, beginning or later) at 1, 5, 10, 20 and 50 mg·l-1 acylase concentrations. The acylase treatment for 5 days showed that acylase concentration was negative with biofilm development (linear regression, Y = -0.05·x + 2.37, p < 0.05, R2 = 0.88). Acylase was more effective in reducing biofilm formation when it was applied in the beginning (vs. in later development stage) at all acylase concentrations (p < 0.05). ANOVA indicated that treatment period was significant on biofilm formation in both application timings at ≥ 10 mg·l-1 (p < 0.05). Linearity test results showed that all slope values between period and biofilm were negative in both timings at ≥ 10 mg·l-1 (p < 0.05, except for the later application at 20 mg·l-1). When temporal biofilm dynamics were monitored at 20 mg·l-1, biofilms gradually increased with time at all treatment episodes (p < 0.05), and slope values in linear regression between biofilm and time were lower when acylase was applied in the beginning (p < 0.05). Our findings suggest the importance of the acylase treatment period and application timing on biofilm control.