In this paper, we describe a generation mechanism of semantic-based queries for high accuracy information retrieval and question answering. It is difficult to offer the correct retrieval result because general information retrieval systems do not analyze the semantic of user's natural language question. We analyze user's question semantically and extract semantic features, and we .generate semantic-based queries using them. These queries are generated using the se-mantic-based question analysis grammar and the query generation rule. They are represented as semantic features and grammatical morphemes that consider semantic and syntactic structure of user's questions. We evaluated our mechanism using 100 questions whose answer type is a person in the TREC-9 corpus and Web. There was a 0.28 improvement in the precision at 10 documents when semantic-based queries were used for information retrieval.
본 논문은 한국어 어휘에 대한 풍부한 정보를 담고 있는 한국어사전과 사용자 어휘지능망(User-Word Intelligent Network: U-WIN)등의 언어자원을 이용한 자동 문제 생성 기술을 소개하고, 이 기술을 이용한 한국어 어휘학습시스템을 제시한다. 대부분의 학습시스템에서 사용하는 문제 은행식 출제 방식의 문제점을 해소하기 위하여, 자동 문제 생성을 위한 한국어 어휘 문제의 유형을 8가지로 분류하고, 각 문제 유형별 자동 문제 생성 패턴을 구축하였다. 이러한 자동 문제 생성 패턴에 따라 언어자원이 가지고 있는 한국어 어휘의 형태적 정보와 의미적 정보를 이용하여 어휘 문제를 자동으로 출제하는 한국어 어휘학습 시스템을 구현하였다.
본 연구는 검색 기반의 질문 자동 생성 시스템에서 사용자가 이미 답변한 내용을 재질문하지 않도록 사용자의 응답과 유사도가 높은 응답을 질문-데이터베이스에서 찾는 방법을 제안한다. 유사도가 높게 검출된 응답의 질문은 이미 사용자가 아는 내용일 확률이 높기 때문에 질문 후보군에서 제거한다. 유사 응답 검출에는 두 응답간의 동일 단어, 바꿔쓰기 표현, 문장 내용을 모두 사용하였다. 바꿔쓰기 표현은 통계기반의 기계번역에서 사용하는 구절 테이블을 사용하여 구축하였다. 문장 내용은 두 문장을 주의-기반 컨볼루션 신경망으로 압축하여 유사도를 계산하였다. 평가를 위해 구축한 100개의 평가 응답에 질문-응답 데이터베이스로부터 가장 유사한 응답을 추출해서 얻은 결과는 MRR값 71%의 성능을 보였다.
이 연구는 초등과학 수업에서 논변 생성 활동을 지도한 후 초등학생의 의문생성, 과학학업성취도 및 과학에 대한 태도에 미치는 효과를 알아보았다. 이를 위해 경기도 G시에 있는 H초등학교 5학년 학생들을 대상으로 실시하였고, 결과는 다음과 같다. 첫째, 논변 생성 활동을 지도한 후, 학생들의 의문생성력은 통계적으로 유의미하게 향상되었음을 알았다. 둘째, 학생들의 과학학업성취도는 통계적으로 유의한 차이가 나타나지 않았다. 그러나 교사 성찰일지에 의하면, 논변 활동과 모둠 친구들의 설명을 통해 학생들의 개념 변화를 볼 수 있었다. 셋째, 과학에 대한 태도에 있어서 통계적으로 유의한 차이가 나타나지 않았다. 반면, 과학 수업에 대한 참여태도의 변화가 있었는데, 과학에 대한 관심과 과학 공부를 더 열심히 해야 한다는 반응에서 과학수업 참여의 긍정적인 변화가 보였다.
The 10th International Conference on Construction Engineering and Project Management
/
pp.439-446
/
2024
This study investigates the potential of Retrieval-Augmented Generation (RAG)-based Question Answering (QA) technology for accurate and relevant responses of Large Language Models (LLMs) to construction safety-related queries. Despite LLMs' advancements, their application, especially a Q&A Chatbot faces challenges due to hallucination and lack of domain-specific details. This study explores RAG's potentials to mitigate these issues by making LLM refer to external databases, such as the OSHA Field Safety and Health Manual, for generating precise and factual contents. A comparative analysis of different RAG technologies-Naïve-RAG, Rerank-RAG, and Iterative Retrieval-Generation-demonstrates their effectiveness over traditional LLM approaches. The findings highlight RAG's significance in producing structured, fact-based responses, underscoring its superiority in addressing the domain-specific informational needs regarding construction safety practices. This research marks a step forward in the application of generative AI technologies to enhance safety standards and practices within the construction industry.
Considering the opinions of annotators, the remedy about excess of east and deficiency of west from "the seventy-fifth question" can be arranged as follows. "The seventy-fifth question", with "the sixty-ninth question", explains excess and deficiency of mother and son. Abatement of fire and invigoration of water[瀉火補水] in the excess of wood and deficiency of metal[木實金虛] presents a remedy, which has been applied in herbs and medicine application henceforth. "The seventy-fifth question" is a unique theory from " Nan-gyeong(難經)", and does not continue the theory of "Hwangjenaegyeong(黃帝內經)". "The seventy-fifth question" mentions the relationship of excess and deficiency of the five elements and five viscera, but does not mention excess and deficiency of invigoration and abatement of the meridian. Remedy from abatement of fire and invigoration of water[瀉火補水] in the excess of wood and deficiency of metal[木實金虛] is an abnormal, temporary and extraordinary method. This remedy is applied in Saam acupuncture[舍巖鍼] as A-variation form. The process where Son allows excess of mother[子能令母實] and mother allows deficiency of son[母能令子虛] in the abatement of fire and invigoration of water[瀉火補水] is a mechanism, not a remedy. Generation after generation, medical practitioners can be classified into those that claimed abatement of fire and invigoration of water[瀉火補水] because of the relation with excess of liver and deficiency of lung[肝實肺虛], abatement of heart(瀉心) due to the excess of liver(肝實), or invigoration of Eum and abatement of Yang[補陰瀉陽].
KSII Transactions on Internet and Information Systems (TIIS)
/
제17권10호
/
pp.2718-2731
/
2023
This paper presents a method of using syntax and shallow semantic analysis for Vietnamese question generation (QG). Specifically, our proposed technique concentrates on investigating both the syntactic and shallow semantic structure of each sentence. The main goal of our method is to generate questions from a single sentence. These generated questions are known as factoid questions which require short, fact-based answers. In general, syntax-based analysis is one of the most popular approaches within the QG field, but it requires linguistic expert knowledge as well as a deep understanding of syntax rules in the Vietnamese language. It is thus considered a high-cost and inefficient solution due to the requirement of significant human effort to achieve qualified syntax rules. To deal with this problem, we collected the syntax rules in Vietnamese from a Vietnamese language textbook. Moreover, we also used different natural language processing (NLP) techniques to analyze Vietnamese shallow syntax and semantics for the QG task. These techniques include: sentence segmentation, word segmentation, part of speech, chunking, dependency parsing, and named entity recognition. We used human evaluation to assess the credibility of our model, which means we manually generated questions from the corpus, and then compared them with the generated questions. The empirical evidence demonstrates that our proposed technique has significant performance, in which the generated questions are very similar to those which are created by humans.
한국지능정보시스템학회 2001년도 The Pacific Aisan Confrence On Intelligent Systems 2001
/
pp.285-291
/
2001
This paper describes a natural language question answering system that can be used by students in getting as solution to their queries. Unlike AI question answering system that focus on the generation of new answers, the present system retrieves existing ones from question-answer files. Unlike information retrieval approaches that rely on a purely lexical metric of similarity between query and document, it uses a semantic knowledge base (WordNet) to improve its ability to match question. Paper describes the design and the current implementation of the system as an intelligent tutoring system. Main drawback of the existing tutoring systems is that the computer poses a question to the students and guides them in reaching the solution to the problem. In the present approach, a student asks any question related to the topic and gets a suitable reply. Based on his query, he can either get a direct answer to his question or a set of questions (to a maximum of 3 or 4) which bear the greatest resemblance to the user input. We further analyze-application fields for such kind of a system and discuss the scope for future research in this area.
컴퓨터를 교육적으로 활용하기 위한 다양한 노력들이 시도되고 있으며 이러한 노력의 결과로 각종 학습 프로그램들이 제작되고 있다. 이제까지의 테스트 프로그램들은 학습자에게 일방적으로 문제를 내고 풀도록 하는데 그쳤다. 또한, 출제자 역시 학습문제를 일일이 입력해야 했다. 따라서 본 논문은 첫째, 학습자 스스로가 문제를 입력할 수 있도록 한다. 둘째, 이렇게 만들어진 문제를 기초 데이터로 하여 새로운 문제를 만들어내는 시스템을 개발한다. 문제자동출제 알고리즘을 적용시킨 시스템의 구현환경을 소개하고, 각종 내부 모듈과 문제은행, 문제자동출제의 유형별 예제를 들어 설명한다. 데이터를 활용하여 문제를 타동으로 출제해주는 시스템을 개발한다. 이것을 교육용 프로그램에 적용시키는 방안에 대하여 알아보고, 이렇게 설계 구현한 시스템을 한자과목에 도입하여 이의 효용성을 타진해보고, 이를 다른 과옥에 적용시킬 수 있는가에 대하여 알아본다.
Question Answering (QA) 서비스는 사용자의 자연어 질의에 대응하는 정확한 답변을 제공하는 시스템이다. 본 연구는 특정 도메인에 관련한 사용자들의 질문에 대해 QA 서비스가 자동으로 대응하는 방법에 관한 연구이다. 이를 수행하기 위하여 사용자의 자연어 질문을 이해하고, 정형 데이터 및 비정형 데이터로부터 사용자 질문에 적합한 답변을 도출하여 제공하는 방법을 제시한다. 실험 결과 top 1 accuracy 68%, top 5 accuracy 77% 결과를 얻었다. 또한 본 논문은 QA 시스템 내부 모듈이 전체 accuracy에 미치는 영향에 대해서도 기술하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.