• Title/Summary/Keyword: query clustering

Search Result 120, Processing Time 0.029 seconds

Accurate Location Identification by Landmark Recognition

  • Jian, Hou;Tat-Seng, Chua
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.164-169
    • /
    • 2009
  • As one of the most interesting scenes, landmarks constitute a large percentage of the vast amount of scene images available on the web. On the other hand, a specific "landmark" usually has some characteristics that distinguish it from surrounding scenes and other landmarks. These two observations make the task of accurately estimating geographic information from a landmark image necessary and feasible. In this paper, we propose a method to identify landmark location by means of landmark recognition in view of significant viewpoint, illumination and temporal variations. We use GPS-based clustering to form groups for different landmarks in the image dataset. The images in each group rather fully express the possible views of the corresponding landmark. We then use a combination of edge and color histogram to match query to database images. Initial experiments with Zubud database and our collected landmark images show that is feasible.

  • PDF

Load Balancing Method Using Proximity of Query Region in Web GIS Clustering System (Web GIS 클러스터링 시스템에서 질의 영역의 인접성을 이용한 로드 밸런싱 기법)

  • 장용일;이찬구;이충호;이재동;배해영
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04b
    • /
    • pp.214-216
    • /
    • 2001
  • 웹 GIS에서의 인터넷 서비스 이용자의 집중 현상으로 발생하는 서버의 과부하 현상을 막고 안정적인 서비스 제공을 위해서는 웹 클러스터링 기술의 도입이 필요하다. 공간 질의는 웹 데이터와는 달리 인접 영역에 대한 질의가 매우 잣으며, 질의 처리 결과가 대용량이라는 특성을 가지고 있다. 이러한 공간 질의의 특성을 고려하지 않을 경우, 서버에서 처리되는 질의들의 지역적 인접성이 낮아지고 낮은 버퍼 재 사용율은 디스크로의 접근 빈도를 높여 질의 처리 비용을 증가시키는 원인이 된다. 본 논문에서는 웹 GIS 클러스터링 시스템을 위한 질의 영역의 인접성을 이용한 로드 밸런싱 기법을 제안한다. 제안하는 기법은 공간 데이터를 타일을 기반으로 인접한 타일의 그룹을 생성하여 각 서버에 할당하여, 질의 영역 및 공간 연산을 고려하여 서버에서 질의가 처리되는 동안 버퍼 재사용율이 최대가 되도록 클라이언트의 질의 요청을 적절한 서버에 전달한다. 제안하는 기법은 서버의 버퍼를 공간 인덱스 탐색에 최적화함으로써 서버의 버퍼 재상용율을 높이고, 클러스터링 시스템에서 디스크의 접근 횟수를 낮추어, 전체적인 서버 시스템의 처리 능력을 형상시킨다.

  • PDF

Component Classification and Retrieval using Clustering Algorithm (클러스터링 알고리즘을 이용한 컴포넌트 분유 및 검색)

  • 김귀정
    • The Journal of the Korea Contents Association
    • /
    • v.2 no.3
    • /
    • pp.87-95
    • /
    • 2002
  • This study proposes method to classify components in repository and retrieve them introducing the idea of domain orientation for successful reuse of components. About components of existing systems design pattern was applied to, us suggest component classification method to compare structural similarity between each component in relevant domain and criterion pattern. Component reusability and portability between platforms can be increased through classifying reusable components by function and giving their structures with diagram. Efficiency of component reuse can be raised because the most appropriate component to query and similar candidate components and provided in priority by use of E-SARM algorithm.

  • PDF

Performance of Distributed Database System built on Multicore Systems

  • Kim, Kangseok
    • Journal of Internet Computing and Services
    • /
    • v.18 no.6
    • /
    • pp.47-53
    • /
    • 2017
  • Recently, huge datasets have been generating rapidly in a variety of fields. Then, there is an urgent need for technologies that will allow efficient and effective processing of huge datasets. Therefore the problems of partitioning a huge dataset effectively and alleviating the processing overhead of the partitioned data efficiently have been a critical factor for scalability and performance in distributed database system. In our work we utilized multicore servers to provide scalable service to our distributed system. The partitioning of database over multicore servers have emerged from a need for new architectural design of distributed database system from scalability and performance concerns in today's data deluge. The system allows uniform access through a web service interface to concurrently distributed databases over multicore servers, using SQMD (Single Query Multiple Database) mechanism based on publish/subscribe paradigm. We will present performance results with the distributed database system built on multicore server, which is time intensive with traditional architectures. We will also discuss future works.

Proximate Word Filtering by Hierarchical Clustering (계층적 군집화를 이용한 근사 단어 필터링 기법)

  • Kim, Sung-Hwan;Cho, Hwan-Gue
    • Annual Conference of KIPS
    • /
    • 2012.04a
    • /
    • pp.1101-1104
    • /
    • 2012
  • 단어 필터링은 유해정보를 차단위한 기본적인 기능이다. 그러나 악의적인 사용자는 필터링 시스템을 우회하기 위하여 금지 단어에 의도적인 변형을 가한다. 이에 대응하기 위해 일정 오류를 허용하여 필터링을 수행하는 근사 단어 필터링이 있다. 근사 단어를 검색하기 위한 문자열 색인 방법으로는 주로 기준 단어(Pivot)을 이용한 유클리드 공간에의 사상을 이용하는데, 이는 단어 필터링에 응용하기에는 근본적인 구조상의 한계점이 있다. 본 논문에서는 필터링 대상이 되는 단어 집합 내에서 군집화를 수행하여 계층적인 자료구조를 구성하고, 단어 필터링을 위한 필터링 질의(Filtering query)를 정의한 뒤 그에 적합한 탐색 상의 적용에 관하여 설명한다. 실험 결과 기존의 기준 단어(Pivot)을 이용한 색인 기법에 비하여 16.9%~26.6%의 탐색 속도 향상을 확인할 수 있었다.

Alleviating Semantic Term Mismatches in Korean Information Retrieval (한국어 정보 검색에서 의미적 용어 불일치 완화 방안)

  • Yun, Bo-Hyun;Park, Sung-Jin;Kang, Hyun-Kyu
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.12
    • /
    • pp.3874-3884
    • /
    • 2000
  • An information retrieval system has to retrieve all and only documents which are relevant to a user query, even if index terms and query terms are not matched exactly. However, term mismatches between index terms and qucry terms have been a serious obstacle to the enhancement of retrieval performance. In this paper, we discuss automatic term normalization between words in text corpora and their application to a Korean information retrieval system. We perform two types of term normalizations to alleviate semantic term mismatches: equivalence class and co-occurrence cluster. First, transliterations, spelling errors, and synonyms are normalized into equivalence classes bv using contextual similarity. Second, context-based terms are normalized by using a combination of mutual information and word context to establish word similarities. Next, unsupervised clustering is done by using K-means algorithm and co-occurrence clusters are identified. In this paper, these normalized term products are used in the query expansion to alleviate semantic tem1 mismatches. In other words, we utilize two kinds of tcrm normalizations, equivalence class and co-occurrence cluster, to expand user's queries with new tcrms, in an attempt to make user's queries more comprehensive (adding transliterations) or more specific (adding spc'Cializationsl. For query expansion, we employ two complementary methods: term suggestion and term relevance feedback. The experimental results show that our proposed system can alleviatl' semantic term mismatches and can also provide the appropriate similarity measurements. As a result, we know that our system can improve the rctrieval efficiency of the information retrieval system.

  • PDF

A Cluster-Organizing Routing Algorithm by Diffusing Bitmap in Wireless Sensor Networks (무선 센서 네트워크에서의 비트맵 확산에 의한 클러스터 형성 라우팅 알고리즘)

  • Jung, Sangjoon;Chung, Younky
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.2
    • /
    • pp.269-277
    • /
    • 2007
  • Network clustering has been proposed to provide that sensor nodes minimize energy and maximize a network lifetime by configuring clusters, Although dynamic clustering brings extra overhead like as head changing, head advertisement, it may diminish the gain in energy consumption to report attribute tasks by using cluster heads. Therefore, this paper proposes a new routing algorithm which configures cluster to reduce the number of messages when establishing paths and reports to the sink by way of cluster heads when responding sens ing tasks. All sensor nodes only broadcast bitmap once and maintain a bitmap table expressed by bits, allowing them to reduce node energy and to prolong the network lifetime. After broadcasting, each node only updates the bitmap without propagation when the adjacent nodes broad cast same query messages, This mechanism makes nodes to have abundant paths. By modifying the query which requests sensing tasks, the size of cluster is designed dynamically, We try to divide cluster by considering the number of nodes. Then, all nodes in a certain cluster must report to the sub- sink node, The proposed routing protocol finds easily an appropriate path to report tasks and reduces the number of required messages for the routing establishment, which sensor nodes minimize energy and maximize a network lifetime.

  • PDF

Cluster-based Image Retrieval Method Using RAGMD (RAGMD를 이용한 클러스터 기반의 영상 검색 기법)

  • Jung, Sung-Hwan;Lee, Woo-Sun
    • The KIPS Transactions:PartB
    • /
    • v.9B no.1
    • /
    • pp.113-118
    • /
    • 2002
  • This paper presents a cluster-based image retrieval method. It retrieves images from a related cluster after classifying images into clusters using RAGMD, a clustering technique. When images are retrieved, first they are retrieved not from the whole image database one by one but from the similar cluster, a similar small image group with a query image. So it gives us retrieval-time reduction, keeping almost the same precision with the exhaustive retrieval. In the experiment using an image database consisting of about 2,400 real images, it shows that the proposed method is about 18 times faster than 7he exhaustive method with almost same precision and it can retrieve more similar images which belong to the same class with a query image.

Resampling Feedback Documents Using Overlapping Clusters (중첩 클러스터를 이용한 피드백 문서의 재샘플링 기법)

  • Lee, Kyung-Soon
    • The KIPS Transactions:PartB
    • /
    • v.16B no.3
    • /
    • pp.247-256
    • /
    • 2009
  • Typical pseudo-relevance feedback methods assume the top-retrieved documents are relevant and use these pseudo-relevant documents to expand terms. The initial retrieval set can, however, contain a great deal of noise. In this paper, we present a cluster-based resampling method to select better pseudo-relevant documents based on the relevance model. The main idea is to use document clusters to find dominant documents for the initial retrieval set, and to repeatedly feed the documents to emphasize the core topics of a query. Experimental results on large-scale web TREC collections show significant improvements over the relevance model. For justification of the resampling approach, we examine relevance density of feedback documents. The resampling approach shows higher relevance density than the baseline relevance model on all collections, resulting in better retrieval accuracy in pseudo-relevance feedback. This result indicates that the proposed method is effective for pseudo-relevance feedback.

An Efficient Video Clip Matching Algorithm Using the Cauchy Function (커쉬함수를 이용한 효율적인 비디오 클립 정합 알고리즘)

  • Kim Sang-Hyul
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.4
    • /
    • pp.294-300
    • /
    • 2004
  • According to the development of digital media technologies various algorithms for video clip matching have been proposed to match the video sequences efficiently. A large number of video search methods have focused on frame-wise query, whereas a relatively few algorithms have been presented for video clip matching or video shot matching. In this paper, we propose an efficient algorithm to index the video sequences and to retrieve the sequences for video clip query. To improve the accuracy and performance of video sequence matching, we employ the Cauchy function as a similarity measure between histograms of consecutive frames, which yields a high performance compared with conventional measures. The key frames extracted from segmented video shots can be used not only for video shot clustering but also for video sequence matching or browsing, where the key frame is defined by the frame that is significantly different from the previous frames. Experimental results with color video sequences show that the proposed method yields the high matching performance and accuracy with a low computational load compared with conventional algorithms.

  • PDF