Proceedings of the Korean Society of Broadcast Engineers Conference
/
2009.01a
/
pp.164-169
/
2009
As one of the most interesting scenes, landmarks constitute a large percentage of the vast amount of scene images available on the web. On the other hand, a specific "landmark" usually has some characteristics that distinguish it from surrounding scenes and other landmarks. These two observations make the task of accurately estimating geographic information from a landmark image necessary and feasible. In this paper, we propose a method to identify landmark location by means of landmark recognition in view of significant viewpoint, illumination and temporal variations. We use GPS-based clustering to form groups for different landmarks in the image dataset. The images in each group rather fully express the possible views of the corresponding landmark. We then use a combination of edge and color histogram to match query to database images. Initial experiments with Zubud database and our collected landmark images show that is feasible.
Proceedings of the Korean Information Science Society Conference
/
2001.04b
/
pp.214-216
/
2001
웹 GIS에서의 인터넷 서비스 이용자의 집중 현상으로 발생하는 서버의 과부하 현상을 막고 안정적인 서비스 제공을 위해서는 웹 클러스터링 기술의 도입이 필요하다. 공간 질의는 웹 데이터와는 달리 인접 영역에 대한 질의가 매우 잣으며, 질의 처리 결과가 대용량이라는 특성을 가지고 있다. 이러한 공간 질의의 특성을 고려하지 않을 경우, 서버에서 처리되는 질의들의 지역적 인접성이 낮아지고 낮은 버퍼 재 사용율은 디스크로의 접근 빈도를 높여 질의 처리 비용을 증가시키는 원인이 된다. 본 논문에서는 웹 GIS 클러스터링 시스템을 위한 질의 영역의 인접성을 이용한 로드 밸런싱 기법을 제안한다. 제안하는 기법은 공간 데이터를 타일을 기반으로 인접한 타일의 그룹을 생성하여 각 서버에 할당하여, 질의 영역 및 공간 연산을 고려하여 서버에서 질의가 처리되는 동안 버퍼 재사용율이 최대가 되도록 클라이언트의 질의 요청을 적절한 서버에 전달한다. 제안하는 기법은 서버의 버퍼를 공간 인덱스 탐색에 최적화함으로써 서버의 버퍼 재상용율을 높이고, 클러스터링 시스템에서 디스크의 접근 횟수를 낮추어, 전체적인 서버 시스템의 처리 능력을 형상시킨다.
This study proposes method to classify components in repository and retrieve them introducing the idea of domain orientation for successful reuse of components. About components of existing systems design pattern was applied to, us suggest component classification method to compare structural similarity between each component in relevant domain and criterion pattern. Component reusability and portability between platforms can be increased through classifying reusable components by function and giving their structures with diagram. Efficiency of component reuse can be raised because the most appropriate component to query and similar candidate components and provided in priority by use of E-SARM algorithm.
Recently, huge datasets have been generating rapidly in a variety of fields. Then, there is an urgent need for technologies that will allow efficient and effective processing of huge datasets. Therefore the problems of partitioning a huge dataset effectively and alleviating the processing overhead of the partitioned data efficiently have been a critical factor for scalability and performance in distributed database system. In our work we utilized multicore servers to provide scalable service to our distributed system. The partitioning of database over multicore servers have emerged from a need for new architectural design of distributed database system from scalability and performance concerns in today's data deluge. The system allows uniform access through a web service interface to concurrently distributed databases over multicore servers, using SQMD (Single Query Multiple Database) mechanism based on publish/subscribe paradigm. We will present performance results with the distributed database system built on multicore server, which is time intensive with traditional architectures. We will also discuss future works.
단어 필터링은 유해정보를 차단위한 기본적인 기능이다. 그러나 악의적인 사용자는 필터링 시스템을 우회하기 위하여 금지 단어에 의도적인 변형을 가한다. 이에 대응하기 위해 일정 오류를 허용하여 필터링을 수행하는 근사 단어 필터링이 있다. 근사 단어를 검색하기 위한 문자열 색인 방법으로는 주로 기준 단어(Pivot)을 이용한 유클리드 공간에의 사상을 이용하는데, 이는 단어 필터링에 응용하기에는 근본적인 구조상의 한계점이 있다. 본 논문에서는 필터링 대상이 되는 단어 집합 내에서 군집화를 수행하여 계층적인 자료구조를 구성하고, 단어 필터링을 위한 필터링 질의(Filtering query)를 정의한 뒤 그에 적합한 탐색 상의 적용에 관하여 설명한다. 실험 결과 기존의 기준 단어(Pivot)을 이용한 색인 기법에 비하여 16.9%~26.6%의 탐색 속도 향상을 확인할 수 있었다.
The Transactions of the Korea Information Processing Society
/
v.7
no.12
/
pp.3874-3884
/
2000
An information retrieval system has to retrieve all and only documents which are relevant to a user query, even if index terms and query terms are not matched exactly. However, term mismatches between index terms and qucry terms have been a serious obstacle to the enhancement of retrieval performance. In this paper, we discuss automatic term normalization between words in text corpora and their application to a Korean information retrieval system. We perform two types of term normalizations to alleviate semantic term mismatches: equivalence class and co-occurrence cluster. First, transliterations, spelling errors, and synonyms are normalized into equivalence classes bv using contextual similarity. Second, context-based terms are normalized by using a combination of mutual information and word context to establish word similarities. Next, unsupervised clustering is done by using K-means algorithm and co-occurrence clusters are identified. In this paper, these normalized term products are used in the query expansion to alleviate semantic tem1 mismatches. In other words, we utilize two kinds of tcrm normalizations, equivalence class and co-occurrence cluster, to expand user's queries with new tcrms, in an attempt to make user's queries more comprehensive (adding transliterations) or more specific (adding spc'Cializationsl. For query expansion, we employ two complementary methods: term suggestion and term relevance feedback. The experimental results show that our proposed system can alleviatl' semantic term mismatches and can also provide the appropriate similarity measurements. As a result, we know that our system can improve the rctrieval efficiency of the information retrieval system.
Network clustering has been proposed to provide that sensor nodes minimize energy and maximize a network lifetime by configuring clusters, Although dynamic clustering brings extra overhead like as head changing, head advertisement, it may diminish the gain in energy consumption to report attribute tasks by using cluster heads. Therefore, this paper proposes a new routing algorithm which configures cluster to reduce the number of messages when establishing paths and reports to the sink by way of cluster heads when responding sens ing tasks. All sensor nodes only broadcast bitmap once and maintain a bitmap table expressed by bits, allowing them to reduce node energy and to prolong the network lifetime. After broadcasting, each node only updates the bitmap without propagation when the adjacent nodes broad cast same query messages, This mechanism makes nodes to have abundant paths. By modifying the query which requests sensing tasks, the size of cluster is designed dynamically, We try to divide cluster by considering the number of nodes. Then, all nodes in a certain cluster must report to the sub- sink node, The proposed routing protocol finds easily an appropriate path to report tasks and reduces the number of required messages for the routing establishment, which sensor nodes minimize energy and maximize a network lifetime.
This paper presents a cluster-based image retrieval method. It retrieves images from a related cluster after classifying images into clusters using RAGMD, a clustering technique. When images are retrieved, first they are retrieved not from the whole image database one by one but from the similar cluster, a similar small image group with a query image. So it gives us retrieval-time reduction, keeping almost the same precision with the exhaustive retrieval. In the experiment using an image database consisting of about 2,400 real images, it shows that the proposed method is about 18 times faster than 7he exhaustive method with almost same precision and it can retrieve more similar images which belong to the same class with a query image.
Typical pseudo-relevance feedback methods assume the top-retrieved documents are relevant and use these pseudo-relevant documents to expand terms. The initial retrieval set can, however, contain a great deal of noise. In this paper, we present a cluster-based resampling method to select better pseudo-relevant documents based on the relevance model. The main idea is to use document clusters to find dominant documents for the initial retrieval set, and to repeatedly feed the documents to emphasize the core topics of a query. Experimental results on large-scale web TREC collections show significant improvements over the relevance model. For justification of the resampling approach, we examine relevance density of feedback documents. The resampling approach shows higher relevance density than the baseline relevance model on all collections, resulting in better retrieval accuracy in pseudo-relevance feedback. This result indicates that the proposed method is effective for pseudo-relevance feedback.
Journal of the Institute of Convergence Signal Processing
/
v.5
no.4
/
pp.294-300
/
2004
According to the development of digital media technologies various algorithms for video clip matching have been proposed to match the video sequences efficiently. A large number of video search methods have focused on frame-wise query, whereas a relatively few algorithms have been presented for video clip matching or video shot matching. In this paper, we propose an efficient algorithm to index the video sequences and to retrieve the sequences for video clip query. To improve the accuracy and performance of video sequence matching, we employ the Cauchy function as a similarity measure between histograms of consecutive frames, which yields a high performance compared with conventional measures. The key frames extracted from segmented video shots can be used not only for video shot clustering but also for video sequence matching or browsing, where the key frame is defined by the frame that is significantly different from the previous frames. Experimental results with color video sequences show that the proposed method yields the high matching performance and accuracy with a low computational load compared with conventional algorithms.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.