Lee Jong Hak;Yoon Won lung;Lee Kang Kyu;Park Kyu Sik
대한전자공학회:학술대회논문집
/
대한전자공학회 2004년도 학술대회지
/
pp.768-771
/
2004
In this paper, we propose a content-based audio genre classification algorithm that automatically classifies the query audio into five genres such as Classic, Hiphop, Jazz, Rock, Speech using digital signal processing approach. From the 20 second query audio file, 54 dimensional feature vectors, including Spectral Centroid, Rolloff, Flux, LPC, MFCC, is extracted from each query audio. For the classification algorithm, k-NN, Gaussian, GMM classifier is used. In order to choose optimum features from the 54 dimension feature vectors, SFS (Sequential Forward Selection) method is applied to draw 10 dimension optimum features and these are used for the genre classification algorithm. From the experimental result, we verify the superior performance of the SFS method that provides near $90{\%}$ success rate for the genre classification which means $10{\%}$-$20{\%}$ improvements over the previous methods
본 연구에서는 웹 검색 이용자들의 전반적인 검색 행태를 이해하기 위하여 국내에서 널리 사용되고 있는 웹 검색 서비스 네이버에서 생성된 검색 트랜잭션 로그를 분석하였다. 본 연구에서는 웹 검색 트랜잭션 로그 분석에 필요한 세션 정의 방법을 설명하고 로그 정제 및 질의 유형 분류방법을 제시하였으며, 한글 검색 트랜잭션 로그 분석에 필수절인 검색어 정의 방법을 제안하였다. 본 연구의 결과는 보다 효과적인 국내 웹 검색 시스템 개발과 서비스 구축에 기여할 것으로 기대된다.
Iqbal, Omer;Jadoon, Waqas;ur Rehman, Zia;Khan, Fiaz Gul;Nazir, Babar;Khan, Iftikhar Ahmed
KSII Transactions on Internet and Information Systems (TIIS)
/
제12권7호
/
pp.3172-3193
/
2018
Recently, several studies have shown that linear representation based approaches are very effective and efficient for image classification. One of these linear-representation-based approaches is the Collaborative representation (CR) method. The existing algorithms based on CR have two major problems that degrade their classification performance. First problem arises due to the limited number of available training samples. The large variations, caused by illumintion and expression changes, among query and training samples leads to poor classification performance. Second problem occurs when an image is partially noised (contiguous occlusion), as some part of the given image become corrupt the classification performance also degrades. We aim to extend the collaborative representation framework under limited training samples face recognition problem. Our proposed solution will generate virtual samples and intra-class variations from training data to model the variations effectively between query and training samples. For robust classification, the image patches have been utilized to compute representation to address partial occlusion as it leads to more accurate classification results. The proposed method computes representation based on local regions in the images as opposed to CR, which computes representation based on global solution involving entire images. Furthermore, the proposed solution also integrates the locality structure into CR, using Euclidian distance between the query and training samples. Intuitively, if the query sample can be represented by selecting its nearest neighbours, lie on a same linear subspace then the resulting representation will be more discriminate and accurately classify the query sample. Hence our proposed framework model the limited sample face recognition problem into sufficient training samples problem using virtual samples and intra-class variations, generated from training samples that will result in improved classification accuracy as evident from experimental results. Moreover, it compute representation based on local image patches for robust classification and is expected to greatly increase the classification performance for face recognition task.
In this research, we developed an efficient Hangul document classification system for text mining. We mean 'efficient' by maintaining an acceptable classification performance while taking shorter computing time. In our system, given a query document, k documents are first retrieved from the document case base using the k-nearest neighbor technique, which is the main algorithm of case-based reasoning. Then, TFIDF method, which is the traditional vector model in information retrieval technique, is applied to the query document and the k retrieved documents to classify the query document. We call this procedure 'CB_TFIDF' method. The result of our research showed that the classification accuracy of CB_TFIDF was similar to that of traditional TFIDF method. However, the average time for classifying one document decreased remarkably.
디지털 기술의 발달과 인터넷의 대중화에 더불어 영상데이타의 생산과 교환이 더 자유로워짐에 따라 디지털 도서관, 영상처리, 데이타베이스 시스템과 같은 연구분야에서 내용기반 영상검색에 대한 관심이 높아지고 있다. 일반적으로 ´영상에 의한 질의´의 경우 사용자가 마음에 드는 영상이 없더라도 반듯이 진의 영상을 데이타베이스로부터 선택해야 하지만, ´스케치에 의한 질의´는 사용자의 생각에 따라 영상온 그림으로 표현할 수 있으므로 최근에 가장 많이 사용되는 질의 방법 중 하나이다. 본 논문에서는 스케치 진의와 영상 분류 방법을 이용하는 사바 기반의 영상검색 시스템을 제안한다. 본 시스템에서는 유사영상을 검색하기 위해 영상으로부터 색상 히스토그램과 Haar-웨이블릿 계수를 사용하고, leave-one-out 방법을 이용하여 영상을 분류하도록 하였다. 본 논문에서는 사진-그림, 자연 도시 등의 영상 분류론 통해 영상의 의미정보를 추출할 수 있을 뿐 아니라, 사용자 질의 영상을 분류하여, 질의 영상이 갖고 있는 의미공간으로 검색 공간을 축소하여 검색 시간을 단축시키는 효율성을 얻을 수 있었다.
Journal of information and communication convergence engineering
/
제11권4호
/
pp.268-273
/
2013
In this paper, we propose a document classification model using Web documents as a part of the training corpus in order to resolve the imbalance of the training corpus size per category. For the purpose of retrieving the Web documents closely related to each category, the proposed document classification model calculates the matching score between word features and each category, and generates a Web search query by combining the higher-ranked word features and the category title. Then, the proposed document classification model sends each combined query to the open application programming interface of the Web search engine, and receives the snippet results retrieved from the Web search engine. Finally, the proposed document classification model adds these snippet results as Web documents to the training corpus. Experimental results show that the method that considers the balance of the training corpus size per category exhibits better performance in some categories with small training sets.
본 논문에서는 디지털 신호처리를 이용하여 Classic, Hiphop, Jazz, Rock, Speech 등 5개의 오디오 장르를 자동적으로 분류하는 내용기반 오디오 장르 분류기를 제안하였다. 20초 분량의 질의 오디오로부터 23ms 크기의 Hamming window를 이동시켜 가며 Spectral Centroid, Rolloff, Flux 등 STFT 기반의 특징 계수들과 MFCC, LPC 등의 계수들을 구하여 총 54차에 해당하는 특징 벡터 열을 추출하였으며 분류 알고리즘으로는 k-NN, Gaussian, GMM 분류기를 사용하였다. 최적의 특징 벡터를 선별하는 알고리즘으로 총 54차의 특징벡터 중 가장 성능이 좋은 특징 계수들을 찾아 순차적으로 재배치하는 SFS(Sequential Forward Selection)방법을 사용하였고, 이를 이용하여 최적화 된 10차의 특징 벡터만을 선정해서 오디오 장르 분류에 사용하였다. SFS를 적용한 실험 결과 약 90% 가까운 분류 성공률을 보이고 있어 기존 연구에 비하여 약 10%∼20% 정도의 성능 향상을 꾀 할 수 있었다. 한편 실제 사용자들이 오디오 자동 장르 분류 시스템을 사용할 때 일어날 수 있는 상황을 가정하여 임의 구간에서 질의 데이터를 추출하여 실험을 수행하였으며 실험 결과 오디오 파일의 맨 앞과 맨 뒤 등 worst-case 질의를 제외하고는 약 80%대의 분류 성공률을 얻을 수 있었다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제6권5호
/
pp.1373-1387
/
2012
Contextual advertising is an important revenue source for major service providers on the Web. Ads classification is one of main tasks in contextual advertising, and it is used to retrieve semantically relevant ads with respect to the content of web pages. However, it is difficult for traditional text classification methods to achieve satisfactory performance in ads classification due to scarce term features in ads. In this paper, we propose a novel ads classification method that handles the lack of term features for classifying ads with short text. The proposed method utilizes a vocabulary expansion technique using semantic associations among terms learned from large-scale search query logs. The evaluation results show that our methodology achieves 4.0% ~ 9.7% improvements in terms of the hierarchical f-measure over the baseline classifiers without vocabulary expansion.
본 논문에서는 multi-feature clustering(MFC) 방법을 이용한 강인한 내용 기반 음악 장르 분류 알고리즘을 제안한다. 기존 연구와 비교하여 본 논문에서는 입력 질의 패턴(또는 구간)과 입력 질의 길이의 변화에 따라 나타나는 불안정한 시스템 성능을 개선하는데 노력하였고, k-means clustering 기법에 기반한 multi-feature clustering(MFC)이라는 새로운 알고리즘을 제안하였다. 제안된 시스템의 성능을 검증하기 위해 질의 음악 파일의 서로 다른 여러 구간에서 질의 길이를 다변화하여 음악 특징 계수를 추출하였고, MFC 방법을 사용한 시스템과 MFC 방법을 사용하지 않은 시스템에 대한 장르 분류 성공률을 비교하여 제안 알고리즘의 성능을 비교${\cdot}$분석하였다. 모의실험 결과 MFC 방법을 사용한 시스템의 장르 분류 성공률이 높게 나타났고, 시스템의 안정성 역시 높게 나타났다.
검색 집합에 대한 정확한 지식 없이는 대부분의 사용자가 효율적인 질의 형성에 많은 어려움을 겪고 있다. 이러한 어려움을 극복하기 위한 방법 중의 하나가 초기 질의로부터 더 좋은 질의를 형성해 가는 질의 확장이다. 본 연구에서는 초기 질의의 결과로 검색된 클래스가 가지고 있는 개념을 이용하여 질의를 확장하는 개념 기반질의 확장 방법을 제안한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.