• 제목/요약/키워드: quenching temperature

Search Result 445, Processing Time 0.033 seconds

Effect of Quenching Temperature and Cooling Rate on the Mechanical Properties of Direct Quenched Micro-Alloyed Steel for Hot Forging (직접Quenching 열간 단조용 비조질강의 기계적 성질에 미치는 Quenching온도 및 냉각속도의 영향)

  • Shin, Jung-Ho;Ryu, Young-Joo;Kim, Byung-Ok;Ko, In-Yong;Lee, Oh-Yeon
    • Korean Journal of Materials Research
    • /
    • v.22 no.10
    • /
    • pp.513-518
    • /
    • 2012
  • Recently, automobile parts have been required to have high strength and toughness to allow for weight lightening or improved stability. But, traditional micro-alloyed steel cannot be applied in automobile parts. In this study, we considered the influence of quenching temperature and cooling rate for specimens fabricated by vacuum induction furnace. Directly quenched micro-alloyed steel for hot forging can be controlled according to its micro structure and the heat-treatment process. Low carbon steel, as well as alloying elements for improvement of strength and toughness, was used to obtain optimized conditions. After hot forging at $1,200^{\circ}C$, the ideal mechanical properties (tensile strength ${\geq}$ 1,000 MPa, Charpy impact value ${\geq}\;100\;J/cm^2$) can be achieved by using optimized conditions (quenching temperature : 925 to $1,050^{\circ}C$, cooling rate : ${\geq}\;5^{\circ}C/sec$). The difference of impact value according to cooling rate can be influenced by the microstructure. A fine lath martensite micro structure is formed at a cooling rate of over $5^{\circ}C/sec$. On the other hand, the second phase of the M-A constituent microstructure is the cause of crack initiation under the cooling rate of $5^{\circ}C/sec$.

Microstructure and Phase Stability of $\beta$-Dicalcium Silicate ($\beta$형 Dicalcium Silicate 광물의 상 안정성 및 미세구조변화)

  • 박춘근
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.9
    • /
    • pp.957-962
    • /
    • 1997
  • Dicalcium silicate has many polymorphs according to temperature. $\beta$-dicalcium silicate which exists in cement is stabilized by minor components drived from raw materials regardless of temperature, such as high temperature and room temperature. K2O, SO3 and B2O3 are effective stabilizers for $\beta$-dicalcium silicate at room temperature. B2O3 was the most effective stabilizer. Transformation from $\beta$ to ${\gamma}$ phase causes dicalcium silicate to change volume, resulting in dusting phenomenon. When B2O3 was used the phase transformation is the least than any other stabilizers. In addition, the starting temperature of quenching influences phases transformation : low temperature of quenching presented much phase transformation and decreased size of parameter of $\beta$-dicalcium silicate.

  • PDF

Prediction of Phase Transformation and Mechanical Property of Carbon Steel in Quenching based on Finite Element Analysis (유한요소해석을 이용한 탄소강의 담금질 공정에 대한 상변태 및 기계적 성질 예측)

  • Kim, D.K.;Jung, K.H.;Kang, S.H.;Im, Y.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.173-176
    • /
    • 2009
  • A great emphasis has been placed on the design of heat treatment process to achieve desired microstructure and mechanical property of final product. In this study, finite element analysis was carried out to predict temperature, microstructure and hardness of eutectoid steel after water quenching. Convective heat transfer coefficients were determined by inverse analysis using surface temperatures measured with three different installation methods of thermocouples. Finally, the effect of convective heat transfer coefficients on the prediction of temperature history and hardness was analyzed by comparing experimental and simulation results.

  • PDF

Effect of Carbides on the Pitting Corrosion of Mod. 440A Martensitic Stainless Steel (Mod. 440A 마르텐사이트계 스텐인리스강의 공식에 미치는 탄화물의 영향)

  • Kwon, Soon-Doo;Heo, Sung-Hwa;Kang, Chang-Yong
    • Korean Journal of Materials Research
    • /
    • v.25 no.12
    • /
    • pp.666-671
    • /
    • 2015
  • In this study, we investigated the effect of the residual carbides and tempered carbides precipitated by tempering treatment after quenching on the pitting corrosion of mod. 440A martensitic stainless steel. In quenched specimens and tempered specimens after quenching of mod. 440A martensitic stainless steel, the volume fraction of the residual carbides and total carbides decreased with the increase of the austenitizing temperature. Pitting resistance increased with the increase of austenitizing temperature. With the increase of the volume fraction of the residual and total carbides, the pitting resistance of mod. 440A martensitic stainless steel was decreased. The pitting resistance of mod. 0.5C-17Cr-0.5Ni 440A martensitic stainless steel had stronger affected by residual carbides than precipitated carbides produced by tempering.

An Apparatus for Monitoring Real-time Uranium Concentration Using Fluorescence Intensity at Time Zero

  • Lee, Sang-Mock;Shin, Jang-Soo;Kang, Shin-Won
    • Nuclear Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.166-174
    • /
    • 2001
  • An apparatus for detecting remote real-time uranium concentration using an optrode was developed. An optrode to detect uranium fluorescence as remote real-time control was designed. Fluorescence intensity at time 2ero was derived by the fluorescence signal processing and the algorithm to exclude the quenching effect of various quenchers and temperature fluctuations. This apparatus employing the above deriving method and the optrode has an error range within 6% in spite of serious fluorescence lifetime changes due to the quenching effect and temperature fluctuations. The detection limit is 0.06 ppm and the linearity is excellent between 0.06 ppm and 2 ppm on the aqueous uranium solution.

  • PDF

Thermal Shock Resistance of $80Al_2O_3-20Al$ Composites: Experiments and Finite Element Analysis ($80Al_2O_3-20Al$ 복합재료의 내열충격성: 실험과 유한요소 해석)

  • 김일수;신병철
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.3
    • /
    • pp.201-204
    • /
    • 2000
  • Thermal shock resistance of 80Al2O3-20Al composite and monolithic alumina ceramics was compared. Fracture strength was measured by using a 4-pont bending test after quenching. Thermal stresses of the ceramics and ceramic-metal composites were calculated using a finite element analysis. The bending strength of the Al2O3 ceramics decreased catastropically after quenching from 20$0^{\circ}C$ to $0^{\circ}C$. The bending strength of the composite also decreased after quenching from 200~2$25^{\circ}C$, but the strength reduction was much smaller than for Al2O3. The maximum thermal stress occured in the monolithic alumina ceramics when exposed to a temperature difference of 20$0^{\circ}C$ was 0.758 GPa. The same amount of stress occured in the Al2O3-Al composite when the temperature difference of 205$^{\circ}C$ used.

  • PDF

The Computer Simulation of the Temperature Distribution on the Superconducting thin-film by Moving Quenching-Field (이동 Quenching 자계시 컴퓨터 시뮬레이션에 의한 초전도 박막에서의 온도분포해석)

  • Kang, Jung-Sun;Ko, Tae-Kuk
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.115-118
    • /
    • 1991
  • The temperature distribution on the superconducting thin-film is analyzed as moving constant field is applied above upper critical field. The distribution of magnetic field is derived in the normal spot. Governing equation is obtained with the help of the equation of conservation of energy. The temperature distribution and the heat dissipation are obtained through computer simulation by the method of numerical analysis. Maximum temperature is occured in the most right side inside normal spot. The temperature is increased abruptly inside the normal spot, and decreased more gradually outside normal spot in the direction of moving field as velocity is increased. Increasing the velocity rather than increasing magnitude of the normal spot and the applied field makes maximum temperature larger. Heat dissipation is affected by the velocity rather than the magnitude of normal spot and the applied field.

  • PDF

The study on controling curie temperature for the temperature-sensitive Magnetic materical at colling method. (냉각방법에 의한 감온자성체의 큐리온도 조정에 관한 연구)

  • Bae, Jin-Ho;Sin, Yong-Cheol;Kim, Han-Geun
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.828-830
    • /
    • 1988
  • This paper considered temperature-sensitive characteristics on the basis of curie tempeature and quenching method in the process of manufacturing Mn-Cu-Zn Fersite. The results are as follow. Curie tempeature drops according as the content of CuO and ZnO increases. It also decreases according as sintering temperature increases when the content of ZnO in fixed. Curie temperature drops more in quenching than in slow cooling and activation energy diminishes were too. On the basis of curie tempeature, activation energy is greater in paramagnetic region than in ferrimagnetic region. As its voltage-crrent characteristics is similar to that semiconductors, the temperature-sensitive ferrite is expeated to be appied in the area of power electronics.

  • PDF

A Study on the critical cooling rate to avoid carbide precipitation in austenitic manganese steels during quenching (고망간 주강품의 열처리시 탄화물 석출방지를 위한 임계 냉각속도에 관한 연구)

  • Kim, Jeong-Tae;Kwahk, Si-Young;Choi, Jeong-Kil;Hong, Chun-Pyo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.12 no.3
    • /
    • pp.206-214
    • /
    • 1999
  • The effect of cooling rate on carbide precipitation during quenching of austenitic manganese steel was investigated by optical microscopy, image analyzer and numerical analysis. A computer program based on the finite difference method for analyzing heat treatment processes was developed in order to evaluate cooling rates and the possibility of carbide precipitation during quenching. The area ratio of carbide precipitated in the austenite matrix was measured by the image analyzer, and used to determine the critical point of carbide precipitation. Temperature-dependent critical cooling rates at the critical points were calculated using the present simulation program, The calculated results showed a good agreement with the experimental ones.

  • PDF

Effects of Vacuum Heat Treatment and Salt bath Heat Treatment Conditions on Mechanical Properties of High Speed tool Steel (금속도 공구강의 기계적 성질에 미치는 진공열처리와 염욕열처리 조건의 영향)

  • Kim, Je-Don;Kim, Kyung-Sik
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.26 no.1
    • /
    • pp.7-13
    • /
    • 2013
  • Vacuum heat treatment(indirect heating method) has long exposure time at high temperature and low quenching rate. Contrarily salt bath heat treatment (direct heating method) has short exposure time at high temperature and fast cooling rate. With these different features of processes, mechanical properties such as hardness, tensile strength and impact strength of products show very different results. In this study, Salt bath heat treated products showed higher tensile strength and impact strength than vacuum heat treated products but hardness was not much different. These lower mechanical properties of vacuum heat treated products are due to differences in heat process and secondary hardening with high temperature tempering process. Consequently, It indicates that salt bath heat treatment is better way than vacuum heat treatment for product to have high mechanical properties.