• 제목/요약/키워드: quenching dilatometer

검색결과 5건 처리시간 0.028초

딜라토미터를 이용한 STD11 공구강의 오스테나이징 및 템퍼링 열처리에 따른 치수 변화 이방성 연구 (Study on the Anisotropic Size Change by Austenitizing and Tempering Heat Treatment of STD11 Tool Steel Using Dilatometry)

  • 홍기정;강원국;송진화;정인상;이기안
    • 대한금속재료학회지
    • /
    • 제46권12호
    • /
    • pp.800-808
    • /
    • 2008
  • Heat treatment is an important step for tool manufacture, but unavoidably generates dimensional distortion. This study investigated the continuous dimensional change and the anisotropic behavior of STD11 tool steel during austenitizing and tempering heat treatment especially using quenching dilatometer. Dilatometric results represented that the dimensional change along longitudinal direction was larger than that along transverse direction. Anisotropic phase transformation strain was produced in forged STD11 tool steel during heat treatment. Anisotropic dimensional change increased with increasing austenitizing temperature. After tempering, anisotropic distortion was partially reduced. FactSage thermodynamic equilibrium phase simulation and microstructural observation (FE-SEM, TEM) showed that large ($7{\sim}80{\mu}m$) elongated $M_7C_3$ carbides could be formed along rolling direction. The resolution of elongated carbides during austenitizing was found to be related with the change of martensite transformation temperature after heat treatment. Anisotropic size change of STD11 tool steel was mainly attributed to large elongated carbides produced during rolling process. Using dilatometric and metallographic examination, the possible mechanism of the anisotropic size change was also discussed.

Thermal Shock Resistance and Thermal Expansion Behavior of $Al_2TiO_5$ Ceramics

  • Kim, Ik-Jin
    • 한국결정성장학회:학술대회논문집
    • /
    • 한국결정성장학회 2000년도 Proceedings of 2000 International Nano Crystals/Ceramics Forum and International Symposium on Intermaterials
    • /
    • pp.179-193
    • /
    • 2000
  • Aluminium titanate (Al₂TiO5) with an excellent thermal shock resistant and a low the expansion coefficient was obtained by solid solution with MgO, SiO₂, and ZrO₂ in the Al₂TiO5 lattice or in the grain boundary solution through electrofusion in an arc furnace. However, these materials have low mechanical strength due to the presence of microcracks developed by a large difference in thermal expansion coefficients along crystallographic axes. Pure Al₂TiO5 tends to decompose into α-Al₂O₃ and TiO₂-rutile in the temperature range of 750-1300℃ that rendered it apparently useless for industrial applications. Several thermal shock tests were performed: Long therm thermal annealing test at 1100℃ for 100h; and water quenching from 950 to room temperature (RT). Cyclic thermal expansion coefficients up to 1500℃ before and after decomposition tests was also measured using a dilatometer, changes in the microstructure, thermal expansion coefficients, Young's modulus and strengths were determined. The role of microcracks in relation to thermal shock resistance and thermal expansion coefficient is discussed.

  • PDF

Nb의 첨가에 따른 Ti 첨가 저합금강 용접열영향부에서의 석출물 거동 변화 (Precipitation and Precipitate Coarsening Behavior According to Nb Addition in the Weld HAZ of a Ti-containing Steel)

  • 문준오;이창희
    • Journal of Welding and Joining
    • /
    • 제26권1호
    • /
    • pp.76-82
    • /
    • 2008
  • The effect of Nb addition on the precipitation and precipitate coarsening behavior was investigated in Ti and Ti + Nb steel weld HAZ. A dilatometer equipped with a He-quenching system was used to simulate the weld thermal cycle. Compared to $TiC_yN_{1-y}$ precipitate in a Ti containing steel, $Ti_xNb_{1-x}C_yN_{1-y}$ complex particle with addition of Nb is precipitated in a Ti + Nb containing steel. Meanwhile, precipitate coarsening occurred more easily in Ti + Nb steel, which may be because the high temperature stability of $Ti_xNb_{1-x}C_yN_{1-y}$ complex particle is deteriorated by the Nb addition.

9% Ni강의 GMA 및 SA 용접부 변형 예측 (A Study on the Prediction of the Welding Distortion for GMA and SA weldment of 9% Ni Steel)

  • 이희태;김하근;김경규
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2005년도 추계학술발표대회 개요집
    • /
    • pp.26-28
    • /
    • 2005
  • The purpose of this study is to evaluate the behavior of the welding distortion of the 9% Ni steel weldment involving the martensitic phase transformation. In order to do it, an uncoupled thermal-mechanical finite element (FE) model was developed to evaluate the effect of the phase transformation on the distortion for the weldment. High speed quenching dilatometer tests were employed to define the variations of the coefficient of thermal expansion (CTE) with the fraction of the martensitic phase transformation, which strongly depends on the cooling speed after welding. Comprehensive experiments for the welding distortion of the weldment with reference to welding heat input were employed to verify the FE model.

  • PDF

상 변태를 고려한 HY-100강 용접부의 수축 및 잔류응력 예측에 관한 연구 (A Study on the Prediction of Shrinkage and Residual Stress for the HY-100 Weldment Considering the Phase Transformation)

  • 이희태;신상범
    • Journal of Welding and Joining
    • /
    • 제25권1호
    • /
    • pp.42-48
    • /
    • 2007
  • For high performance and structural stability, application of high strength steel has continuously increased. However, the change of the base metal gives rise to problems with the accuracy management of the welded structure. It is attributed to the martensite phase transformation of the high strength low alloy steel weldment. The purpose of this study is to establish the predictive equation of transverse shrinkage and residual stress for the HY-100 weldment. In order to do it, high speed quenching dilatometer tests were performed to define a coefficient of thermal expansion(CTE) at the heating and cooling stage of HY-100 with various cooling rates. Uncoupled thermal-mechanical finite element(FE) models with CTE were proposed to evaluate the effect of the martensite phase transformation on transverse shrinkage and residual stresses at the weldment. FEA results were verified by comparing with experimental results. Based on the results of extensive FEA and experiments, the predictive equation of transverse shrinkage and longitudinal shrinkage force at the HY-100 weldment were formulated as the function of welding heat input/in-plane rigidity and welding heat input respectively.