• Title/Summary/Keyword: quench protection

Search Result 34, Processing Time 0.018 seconds

Study on the quench protective circuit for superconducting MR (MRI용 초전도 마그네트의 퀜치보호회로에 대한 연구)

  • 고락길;배준한;심기덕;권영길;류강식
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2001.02a
    • /
    • pp.80-83
    • /
    • 2001
  • We studied on effective quench protection method to prevent damage from unexpected quench of superconducting magnet for magnetic resonance imaging. And we suggested quench protection circuit that is combined with several protection techniques. This circuit has the capacity to maintain the symmetric nature of the magnetic field and the active shielding effect and to protect shim coils during a quench.

  • PDF

Quench analysis and protection circuit design of a superconducting magnet system for RISP 28GHz ECR ion source

  • Song, S.;Ko, T.K.;Choi, S.;Ahn, M.C.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.2
    • /
    • pp.37-41
    • /
    • 2016
  • This paper presents the developed quench analysis code and protection circuit design for a superconducting magnet system of 28GHz electron cyclotron resonance (ECR) ion source. The superconducting magnet is composed of a hexapole magnet and four solenoid magnets located outside of the hexapole one. All magnets are wound with NbTi composite wire and impregnated by epoxy. By using the developed characteristic analysis code, the normal zone resistance, decaying current and temperature rising can be estimated during quench. Also, the stored magnetic energy is successfully consumed from the series resistor of the designed protection circuit. The analytical results are compared with the experimental results to verify the developed quench analysis code and protection circuit.

Energy extraction system using dual-capacitor switching for quench protection of HTS magnet

  • Choi, Yojong;Lee, Woo Seung;Song, Seunghyun;Jeon, Haeryong;Kang, Hyoungku;Ko, Tae Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.3
    • /
    • pp.49-53
    • /
    • 2017
  • The superconducting magnets have a large inductance as well as high operating current. Therefore, mega-joule scale energy can be stored in the magnet. The energy stored in the magnet is sufficient to damage the magnet when a quench occurs. Quench heater and dump resistor can be used to protect the magnet. However, using quench heater to create quench resistors through heat transfer can be slower than instantly switching resistors. Also, electrical short, overheating and breakdown can occur due to quench heater. Moreover, the number of dump resistor should be limited to avoid large terminal voltage. Therefore, in this paper, we propose a quench protection method for extracting the energy stored in a magnet by charging and discharging energy through a capacitor switching without increasing resistance. The simulation results show that the proposed system has a faster current decay within the allowable voltage level.

Protection properties of HTS coil charging by rotary HTS flux pump in charging and compensation modes

  • Han, Seunghak;Kim, Ji Hyung;Chae, Yoon Seok;Quach, Huu Luong;Yoon, Yong Soo;Kim, Ho Min
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.4
    • /
    • pp.19-24
    • /
    • 2021
  • The low normal zone propagation velocity (NZPV) of high-temperature superconducting (HTS) tape leads to a quench protection problem in HTS magnet applications. To overcome this limitation, various studies were conducted on HTS coils without turn-to-turn insulation (NI coils) that can achieve self-protection. On the other hand, NI coils have some disadvantages such as slow charging and discharging time. Previously, the HTS coils with turn-to-turn insulation (INS coils) were operated in power supply (PS) driven mode, which requires physical contact with the external PS at room-temperature, not in persistent current mode. When a quench occurs in INS coils, the low NZPV delays quench detection and protection, thereby damaging the coils. However, the rotary HTS flux pump supplies the DC voltage to the superconducting circuit with INS coils in a non-contact manner, which causes the INS coils to operate in a persistent current mode, while enabling quench protection. In this paper, a new protection characteristic of HTS coils is investigated with INS coils charging through the rotary HTS flux pump. To experimentally verify the quench protection characteristic of the INS coil, we investigated the current magnitude of the superconducting circuit through a quench, which was intentionally generated by thermal disturbances in the INS coil under charging or steady state. Our results confirmed the protection characteristic of INS coils using a rotary HTS flux pump.

Power System Security Control Method for Quench Characteristic of High-Temperature Superconducting Cable (초전도 케이블의 Quench 특성에 대한 계통안전성 제어방식)

  • Lee, Geun-Joon;Hwang, Si-Dol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.6
    • /
    • pp.29-35
    • /
    • 2005
  • This paper presents the basic quench protection idea for the HTS(High-Temperature Superconducting) cable. In Korea power system, the transfer capability of transmission line is limited by the voltage stability, HTS cable could be one of the countermeasure to enhance the transfer limit with its higher current capacity and lower impedance[1]. However, the quench characteristic makes not only HTS cable to loss its superconductivity, but also change the impedance of the transmission line and power system operating condition dramatically. This pheonominum threats HTS cable safety as well as power system security, therefore a proper protection scheme and security control counterplan have to be established before HTS cable implementation. In this paper, the quench characteristics of HTS cable for the fault current based on heat balance equation was established and a proper protection method regarding conventional protection system was suggested.

Study on the quench protective circuit for inductively coupled superconducting magnet systems (자기적으로 결합된 초전도 마그네트의 퀜치보호에 대한 연구)

  • Ko, Rock-Kil;Bae, Joon-Han;Sim, Ki-Deok;Kwon, Young-Kil;Ryu, Kang-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.41-43
    • /
    • 2001
  • We studied on effective quench protection method to prevent damage from unexpected quench of the inductively coupled superconducting magnet systems for magnetic resonance imaging. And we suggested quench protection circuit that is combined with several protection techniques. This circuit has the capacity to maintain the symmetric nature of the magnetic field and the active shielding effect and to protect shim coils during a quench.

  • PDF

A study result on coordinative protection method of HTS cable implemented distribution system (초전도케이블이 병입된 계통의 고장에 대한 보호협조 검토기법)

  • Lee, Hyun-Chul;Yang, Byeong-Mo;Lee, Geun-Joon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.4
    • /
    • pp.700-704
    • /
    • 2011
  • This paper proposes a coordinative protection study results of 22.9kV HTS(High-Temperature Superconducting) cable implemented distribution system. HTS cable can provide about 5 times larger transfer capacability compare to conventional XLPE cable, however, it has different heat characteristic so called quench. This paper presents the simulation results on Ichun substation HTS cable which connects main transformer and 22.9kV bus. Various expected fault cases are considered and discussed to examine whether conventional protection scheme is effective to protect both of existing facilities and HTS cable. With the results of simulation, conventional protection scheme can be used if instantaneous element and time inverse elements could be adjusted with proper time coordination. Internal temperatures of HTS cable conductor in safe region with proper protection without quench. This results are to be demonstrated by the field test and will be implemented in Ichon substation HTS cable protection and control system.

Power System Security Control Method for Quench Characteristic of High-Temperature Superconducting Cable (초전도 케이블의 퀜치 특성에 대한 계통안전성 제어방식)

  • Lee, Geun-Joon;Hwang, Si-Dol;Lee, Jeong-Phil;Kim, Chang-Hyun;Park, Hye-Chul
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.375-380
    • /
    • 2004
  • This paper presents the basic quench protection idea for the HTS(High-Temperature Superconducting) cable. In Korea power system, the transfer capability of transmission line is limited by the voltage stability, and HTS cable could be one of the countermeasure to solve the transfer limit as its higher current capacity and lower impedance[1]. However, the quench characteristic of HTS cable makes HTS cable to loss its superconductivity, and therefore change the impedance of the line and power system operating condition dramatically. This pheonominum threats not only HTS cable safety but also power system security, therefore a proper protection scheme and security control counterplan have to be established before HTS cable implementation. In this paper, the quench characteristics of HTS cable for the fault current based on heat balance equation was established and a proper protection method by FCL(Fault Current Limiter) was suggested.

  • PDF

Quench Analysis and Operational Characteristics of the Quench Detection System for the KSTAR PF Superconducting Coils (펄스전류 운전에 따른 KSTAR PF 초전도자석의 퀜치 분석 및 퀜치 검출 시스템 운전 특성)

  • Chu, Y.;Yonekawa, H.;Kim, Y.O.;Park, K.R.;Lee, H.J.;Oh, Y.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.3
    • /
    • pp.20-25
    • /
    • 2009
  • The quench detection system of the KSTAR (Korea Superconducting Tokamak Advanced Research) primarily uses the resistive voltage measurement due to a quench. This method is to detect the resistive voltage generated by a quench, which is continuously maintained above the preset voltage threshold for a given holding time. As the KSTAR PF (Poloidal Field) coils are operated in the pulse current mode, the large inductive voltages are generated. Therefore the voltage threshold and the quench holding time should be determined by considering both the inductive voltages measured during the operation, and the maximum conductor temperature rise through the quench analysis. In this paper, the compensation methods for minimizing the inductive voltages are presented for the KSTAR PF coils. The quench hot spot analysis of the PF coils was carried out by the analytical and numerical methods for determining the proper values of the quench voltage threshold and the allowable quench protection delay time.

Tokamak Super Conductor Coil Quench Protection System (토카막용 초전도 코일 보호장치-Quench System)

  • Yoo, H.Y.;Sim, E.Y.;Lee, S.Y.;Jang, Y.H.
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.279-280
    • /
    • 2010
  • 본 논문의 Quench System은 KSTAR의 토카막의 초전도 코일인 플로이달 코일과 토로이달 코일의 보호장치로서 코일에서 Arc 발생 시 코일과 전원을 차단, 분리하고 코일전류를 Dump 저항으로 급속하게 방전시켜, 코일을 보호하는 System 이다.

  • PDF