• Title/Summary/Keyword: quench fragmentation

Search Result 2, Processing Time 0.015 seconds

SHRIMP U-Pb Dating and Volcanic History of the Jipum Volcanics, Western Yeongdeok, Korea (영덕 서부 지품화산암층의 SHRIMP U-Pb 연대측정과 화산과정)

  • Hwang, Sang Koo
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.341-352
    • /
    • 2017
  • The Jipum Volcanics, occurred in western Yeongdeok, are a stratigraphic unit that is composed of rhyolitic pyroclastic rocks, tuffites, andesitic hyaloclastites, rhyolite lavas, tuffaceous conglomerates and andesite lavas. The SHRIMP U-Pb zircon dating yielded eruption ages of $68.5{\pm}1.6Ma$ from the rhyolitic pyroclastic rocks. Around the time, the unit was generated by dominant rhyolitic volcanisms and locally added by concomitant andesitc volcanisms from another vents. The rhyolitic volcanisms first produced the pyroclastic rocks by phreatomagmatic explosions from rhyolitic magma, later made of the rhyolite lava dome by lava effusions from reopening of the rhyolitc magma at the existing vent. At the time between first and second rhyolitic volcanisms, the tuffites were deposited at a shallow depression in the distal volcanic edifice, and andesitic volcanisms first made of the hyaloclastites by quench fragmentation when hot andesite lavas flew into the depression to contact with cold water. and the Jipum volcano was finally covered with the thin andesitic lavas by lava effusions from another vent.

The Occurrence and Formation Mode of Basaltic Rocks in the Tertiary Janggi Basin, Janggi Area (제 3기 장기분지에 나타나는 현무암질암의 산상과 형성기구)

  • Kim, Choon-Sik;Kim, Jin-Seop
    • The Journal of the Petrological Society of Korea
    • /
    • v.16 no.2 s.48
    • /
    • pp.73-81
    • /
    • 2007
  • A basaltic tuff formation (Upper Basaltic Tuff of the Janggi Group) occurs in close association with basalt (Yeonil Basalt) at the Tertiary Janggi basin. The purpose of this paper is to describe the occurrence of the basaltic tuff and associated basalt and to determine their mode of formation. The basaltic rocks of the study area show few distinct lithofacies, all of which are originated from the interaction of basaltic magma with external water. The four lithofacies include (1) sideromelane shard hyaloclastite, (2) pillow breccia, (3) entablature-jointed basalt, and (4) in-situ breccia. The sideromelane shard hyaloclastite constitutes most of the Upper Basaltic Tuff and has a gradual contact with the pillow breccia. The pillow breccia consists of a poorly sorted mixture of isolated and broken pillows, and small basalt globules and fragments engulfed in a volcanic matrix of sideromelane shard hyaloclastite. The entablature-jointed basalt occurs as a small body within the hyaloclastite. It is characterized by irregularly-curved joints known as entablature. The in-situ breccia occurs as a marginal facies of entablature-jointed basalt, and its width varies from 10 to 30m. The result of this study indicates that the basaltic tuff and associated basalts of the study area were produced by the volcanic activity of same period and the basaltic tuff was formed by subaqueous eruption of basaltic lava followed by nonexplosive quench fragmentation.