• Title/Summary/Keyword: qubit

Search Result 27, Processing Time 0.02 seconds

R&D Status of Quantum Computing Technology (양자컴퓨팅 기술 연구개발 동향)

  • Baek, C.H.;Hwang, Y.S.;Kim, T.W.;Choi, B.S.
    • Electronics and Telecommunications Trends
    • /
    • v.33 no.1
    • /
    • pp.20-33
    • /
    • 2018
  • The calculation speed of quantum computing is expected to outperform that of existing supercomputers with regard to certain problems such as secure computing, optimization problems, searching, and quantum chemistry. Many companies such as Google and IBM have been trying to make 50 superconducting qubits, which is expected to demonstrate quantum supremacy and those quantum computers are more advantageous in computing power than classical computers. However, quantum computers are expected to be applicable to solving real-world problems with superior computing power. This will require large scale quantum computing with many more qubits than the current 50 qubits available. To realize this, first, quantum error correction codes are required to be capable of computing within a sufficient amount of time with tolerable accuracy. Next, a compiler is required for the qubits encoded by quantum error correction codes to perform quantum operations. A large-scale quantum computer is therefore predicted to be composed of three essential components: a programming environment, layout mapping of qubits, and quantum processors. These components analyze how many numbers of qubits are needed, how accurate the qubit operations are, and where they are placed and operated. In this paper, recent progress on large-scale quantum computing and the relation of their components will be introduced.

Quantum Bacterial Foraging Optimization for Cognitive Radio Spectrum Allocation

  • Li, Fei;Wu, Jiulong;Ge, Wenxue;Ji, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.2
    • /
    • pp.564-582
    • /
    • 2015
  • This paper proposes a novel swarm intelligence optimization method which integrates bacterial foraging optimization (BFO) with quantum computing, called quantum bacterial foraging optimization (QBFO) algorithm. In QBFO, a multi-qubit which can represent a linear superposition of states in search space probabilistically is used to represent a bacterium, so that the quantum bacteria representation has a better characteristic of population diversity. A quantum rotation gate is designed to simulate the chemotactic step for the sake of driving the bacteria toward better solutions. Several tests are conducted based on benchmark functions including multi-peak function to evaluate optimization performance of the proposed algorithm. Numerical results show that the proposed QBFO has more powerful properties in terms of convergence rate, stability and the ability of searching for the global optimal solution than the original BFO and quantum genetic algorithm. Furthermore, we examine the employment of our proposed QBFO for cognitive radio spectrum allocation. The results indicate that the proposed QBFO based spectrum allocation scheme achieves high efficiency of spectrum usage and improves the transmission performance of secondary users, as compared to color sensitive graph coloring algorithm and quantum genetic algorithm.

Quantum Secret Sharing Scheme with Credible Authentication based on Quantum Walk

  • Li, Xue-Yang;Chang, Yan;Zhang, Shi-Bin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.7
    • /
    • pp.3116-3133
    • /
    • 2020
  • Based on the teleportation by quantum walk, a quantum secret sharing scheme with credible authentication is proposed. Using the Hash function and quantum local operation, combined with the two-step quantum walks circuit on the line, the identity authentication and the teleportation of the secret information in distribution phase are realized. Participants collaborate honestly to recover secret information based on particle measurement results, preventing untrusted agents and external attacks from obtaining useful information. Due to the application of quantum walk, the sender does not need to prepare the necessary entangled state in advance, simply encodes the information to be sent in the coin state, and applies the conditional shift operator between the coin space and the position space to produce the entangled state necessary for quantum teleportation. Security analysis shows that the protocol can effectively resist intercept/resend attacks, entanglement attacks, participant attacks, and impersonation attacks. In addition, the quantum walk circuit used has been implemented in many different physical systems and experiments, so this quantum secret sharing scheme may be achievable in the future.

A review on a 4 K cryogenic refrigeration system for quantum computing

  • Park, Jiho;Kim, Bokeum;Jeong, Sangkwon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.2
    • /
    • pp.1-6
    • /
    • 2022
  • This paper reviews the literature that has been published since 1980s related to cryogenic refrigeration systems for quantum computing. The reason why such a temperature level of 10-20 mK is necessary for quantum computing is that the superconducting qubit is sensitive to even very small thermal disturbances. The entanglement of the qubits may not be sustained due to thermal fluctuations and mechanical vibrations beyond their thresholds. This phenomenon is referred to as decoherence, and it causes an computation error in operation. For the stable operation of the quantum computer, a low-vibration cryogenic refrigeration system is imperative as an enabling technology. Conventional dilution refrigerators (DR), so called 'wet' DR, are precooled by liquid helium, but a more convenient and economical precooling method can be achieved by using a mechanical refrigerator instead of liquid cryogen. These 'dry' DRs typically equip pulse-tube refrigerators (PTR) for precooling the DRs around 4 K because of its particular advantage of low vibration characteristic. In this review paper, we have focused on the development status of 4 K PTRs and further potential development issues will be also discussed. A quiet 4 K refrigerator not only serves as an indispensable precooler of DR but also immediately enhances the characteristics of low noise amplifiers (LNA) or other cryo-electronics of various type quantum computers.

Research Trend about Quantum Circuit Implementation for SHA2 (양자 회로 상에서의 SHA2 구현 동향)

  • Se-Jin, Lim;Kyung-Bae Jang;Yu-Jin Yang;Yu-Jin Oh;Hwa-Jeong Seo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.227-229
    • /
    • 2023
  • 양자컴퓨터는 큐비트(qubit)의 얽힘(entanglement)과 중첩(superposition) 성질을 통해 동시에 연산을 수행할 수 있어 고전컴퓨터에 비해 연산 속도가 획기적으로 빠르다. 전수조사 연산을 매우 빠르게 수행할 수 있는 양자 알고리즘인 Grover 알고리즘을 사용하면, n-bit 보안강도를 가지는 SHA2와 같은 해시함수를 n/2-bit 보안강도로 낮추게 되어 해시함수가 적용되는 분야의 보안을 위협하게 된다. 양자컴퓨터를 통한 해킹에는 많은 양자 자원이 요구되고, 안정적인 구동 환경이 갖춰져야 하기 때문에 실현되기 위해서는 아직까지 상당한 시간이 소요될 것으로 보인다. 이에 연구자들은 필요한 양자 자원을 최소화하는 효율적인 양자 공격 회로를 제시하며 연구를 수행하고 있다. 본 논문에서는 이러한 SHA2 해시함수에 대한 양자 회로 구현 동향에 대해 살펴본다.

Quantum Circuit Implementation of the LED Block Cipher with Compact Qubit (최적의 큐빗수를 만족하는 LED 블록암호에 대한 양자 회로 구현)

  • Min-ho Song;Kyung-bae Jang;Gyeong-ju Song;Won-woong Kim;Hwa-Jeong Seo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.3
    • /
    • pp.383-389
    • /
    • 2023
  • The development of quantum computers and the emergence of quantum algorithms such as Shor's algorithm and Grover's algorithm pose a significant threat to the security of existing cipher systems. Quantum algorithms can efficiently perform mathematical operations that take a long time on traditional computers. This characteristic can significantly reduce the time it takes to break modern cipher systems that rely on mathematical problems. To prepare for quantum attacks based on these algorithms, existing ciphers must be implemented as quantum circuits. Many ciphers have already been implemented as quantum circuits, analyzing quantum resources required for attacks and verifying the quantum strength of the cipher. In this paper, we present quantum circuits for LED lightweight block ciphers and explain each function of quantum circuits. Thereafter, the resources for the LED quantum circuit are estimated and evaluated by comparing them with other lightweight block ciphers.

Measurement set-up for CMOS-based integrated circuits and systems at cryogenic temperature (CMOS 기반의 집적 회로 및 시스템을 위한 극저온 측정 환경 구축)

  • Hyeon-Sik Ahn;Yoonseuk Choi;Junghwan Han;Jae-Won Nam;Kunhee Cho;Jusung Kim
    • Journal of IKEEE
    • /
    • v.28 no.2
    • /
    • pp.174-179
    • /
    • 2024
  • In this work, we introduce a complementary metal-oxide semiconductor(CMOS)-based integrated circuit(IC) measurement set-up for quantum computer control and read-out using a cryogenic refrigerator. CMOS circuits have to operate at extremely low temperatures of 3 to 5 K for qubit stability and noise reduction. The existing cryogenic measurement system is liquid helium quenching, which is expensive due to the long-term use of expendable resources. Therefore, we describe a cryogenic measurement system based on a closed cycle refrigerator (CCR) that is cost-free even when using helium gas for long periods of time. The refrigerator capable of reaching 4.7 K was built using a Gifford-Mcmahon(G-M) type cryocooler. This is expected to be a cryogenic refrigerator set-up with excellent price competitiveness.