• Title/Summary/Keyword: quasistatic

Search Result 53, Processing Time 0.021 seconds

Precast Concrete Copings for Precast Segmental PSC Bridge Columns : I. Development and Verification of System (프리캐스트 세그먼트 PSC 교각의 조립식 코핑부 : I. 시스템 개발 및 검증)

  • Kim, Tae-Hoon;Park, Se-Jin;Kim, Young-Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5A
    • /
    • pp.463-473
    • /
    • 2010
  • The purpose of this study was to investigate the performance of precast concrete copings for precast segmental PSC bridge columns. The proposed system can reduce work at a construction site and makes construction periods shorter. The precast concrete copings provides an alternative to current cast-in-place systems, particularly for areas where reduced construction time is desired. A model of precast concrete copings was tested under quasistatic monotonic loading. As a result, proposed precast coping system was equal to existing cast-in-place system in terms of required performance. In the companion paper, the experimental and analytical study for the performance assessment of precast concrete copings for precast segmental PSC bridge columns is performed.

Precast Concrete Copings for Precast Segmental PSC Bridge Columns : II. Experiments and Analyses (프리캐스트 세그먼트 PSC 교각의 조립식 코핑부 : II. 실험 및 해석)

  • Kim, Tae-Hoon;Kim, Young-Jin;Lee, Jae-Hoon;Shin, Hyun-Mock
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5A
    • /
    • pp.475-484
    • /
    • 2010
  • The purpose of this study is to investigate the inelastic behavior of precast concrete copings for precast segmental PSC bridge columns and to provide the details and reference data. Twelve one-fourth-scale precast concrete copings were tested under quasistatic monotonic loading. In this study, the computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), was used. A joint element is modified to predict the inelastic behaviors of segmental joints. This study documents the testing of precast concrete copings for precast segmental PSC bridge columns and presents conclusions based on the experimental and analytical findings.

Parametric study of the energy absorption capacity of 3D-printed continuous glass fiber reinforced polymer cruciform honeycomb structure

  • Hussain Gharehbaghia;Amin Farrokhabadi
    • Steel and Composite Structures
    • /
    • v.49 no.4
    • /
    • pp.393-405
    • /
    • 2023
  • In this paper, the energy absorption capability of a novel cruciform composite lattice structure was evaluated through the simulation of compression tests. For this purpose, several test samples of Polylactic acid cellular reinforced with continuous glass fibers were prepared for compression testing using the additive manufacturing method of material extrusion. Using a conventional path design for material extrusion, multiple debonding is probable to be occurred at the joint regions of adjacent cells. Therefore, an innovative printing path design was proposed for the cruciform lattice structure. Afterwards, quasistatic compression tests were performed to evaluate the energy absorption behaviour of this structure. A finite element model based on local material property degradation was then developed to verify the experimental test and extend the virtual test method. Accordingly, different combinations of unit cells' dimensions using the design of the experiment were numerically proposed to obtain the optimal configuration in terms of the total absorbed energy. Having brilliant energy absorption properties, the studied cruciform lattice with its optimized unit cell dimensions can be used as an energy absorber in crashworthiness applications. Finally, a cellular structure will be suitable with optimal behavior in crush load efficiency and high energy absorption.

Transverse Low Velocity Impact Failure Behavior of Triaxial Braided Composite Tube with Different Braiding Angles (Triaxial braiding 기술을 이용한 원형 튜브의 횡방향 저속충격파괴 거동분석)

  • Sim, Ji-hyun;Park, Sung-min;Kim, Ji-hye;Shin, Dong-woo;Chon, Jin-sung;Kim, Jae-kwan;Bae, Jin-Seok
    • Textile Coloration and Finishing
    • /
    • v.28 no.4
    • /
    • pp.246-252
    • /
    • 2016
  • In comparison to metal alloys, braided composite features a high impact resistance and crash energy absorption potential, and also it still remained competitive stiffness and strength properties. Braiding angle is one of the most important parameters which affect the mechanical behaviors of braided composite. This paper presents transverse low velocity impact failure behavior analysis on the carbon 3D triaxial braided composite tube with the braiding angle of $20^{\circ}$, $50^{\circ}$ and $80^{\circ}$. The flexural behaviour of 3D triaxial braided composite tube under bending loads was studied by conducting quasistatic three point bending test. Also, the low velocity impact responses of the braided composite tubes were also tested to obtain load-displacement curves and energy absorption. Consequently, the increase of the braided angle, the peak load also increases owing to the bigger bending stiffness.

Generalized Sub-optimum Decoding for Space-Time Trellis Codes in Quasistatic Flat Fading Channel (준정적 플랫 페이딩 채널에서 시공간 트렐리스 부호의 일반화된 부최적 복호법)

  • Kim Young Ju;Shin Sang Sup;Kang Hyun-Soo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.1 s.343
    • /
    • pp.89-94
    • /
    • 2006
  • We present a generalized version of principal ratio combining (PRC)[1], which is a near-optimum decoding scheme for space-time trellis codes in quasi-static flat fading environments. In [1], the performance penalty increases as the number of receive antennas increases. In the proposed scheme, receive antennas are divided into K groups, and the PRC decoding method is applied to each group. This shows a flexible tradeoff between performance and decoding complexity by choosing the appropriate K. Moreover, we also propose the performance index(PI) to easily predict the decoding performance among the possible different(receive antenna) configurations.

Seismic Analysis of Tunnel Structures (터널구조물의 내진해석)

  • Lee, In-Mo;An, Dae-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.3 no.4
    • /
    • pp.3-15
    • /
    • 2001
  • Generally, it has been noted that underground structures have a consistent record of suffering much less damage than surface facilities during earthquakes; but it is still necessary to illustrate the dynamic response of tunnel structures subject to earthquake loadings and to provide the appropriate method for the seismic analysis of underground tunnel structures since many types of underground structures have been and will be constructed in countries situated within seismic zones. In this study, first, seismic analyses for underground tunnel structures are performed by using quasistatic analysis method and dynamic analysis method. Second, seismic analyses in tunnel portals are performed by using above methods. The results of seismic analyses for the tunnel structure show that the tunnel structure conforms to ground deformation and that seismic design by using the quasi-static analysis method is more conservative than that by using the dynamic analysis. The results of the dynamic FEM analysis for the tunnel structure show that the simplified 2-D FEM analysis using a sine wave rather than the 3-D FEM analysis can be adopted for seismic analysis. Finally, the results of the dynamic FEM analysis in tunnel portals show that the force acting on the lining is largest near to the tunnel portal when an earthquake wave propagates parallel to tunnel axis.

  • PDF

Investigation of Unbalanced Mass of a Work Roll in a Cold Rolling Mill (냉간 압연기에서 작업롤의 질량 불평형에 관한 연구)

  • Kim, Young-Deuk;Kim, Chang-Wan;Park, Hyun-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.4
    • /
    • pp.429-435
    • /
    • 2012
  • An abrasion due to continuous friction between a work roll and strip causes the mass of the work roll to be unbalanced in the rolling process. We developed a mathematical model for the rolling mill considering the unbalanced mass and verified the model experimentally. The work roll was approximated as a rigid rotor with eccentricity, and the effect of the unbalanced mass on chatter vibration was investigated. The joint forces computed by quasistatic analysis were applied to the work roll in the rolling mill. Transient responses were obtained, and frequency analysis was performed by solving equations of motion using a direct integration method. Horizontal vibrations were more strongly affected by eccentricity than vertical vibrations. In the horizontal direction, a small eccentricity of 1% of the work roll radius considerably increased the amplitude of the chatter frequency.

Algorithms for Ultrasound Elasticity Imaging (초음파 탄성 영상 알고리듬)

  • Kwon, Sung-Jae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.5
    • /
    • pp.484-493
    • /
    • 2012
  • Since the 1980s, there have been many research activities devoted to quantitatively characterizing and imaging human tissues based on sound speed, attenuation coefficient, density, nonlinear B/A parameter, etc., but those efforts have not yet reached the stage of commercialization. However, a new imaging technology termed elastography, which was proposed in the early 1980s, has recently been implemented in commercial clinical ultrasound scanners, and is now being used to diagnose prostates, breasts, thyroids, livers, blood vessels, etc., more quantitatively as a complementary adjunct modality to the conventional B-mode imaging. The purpose of this article is to introduce and review various elastographic algorithms for use in quasistatic or static compression type elasticity imaging modes. Most of the algorithms are based on the crosscorrelation or autocorrelation function methods, and the fundamental difference is that the time shift is estimated by changing the lag variable in the former, while it is directly obtained from the phase shift at a fixed lag in the latter.

Experiments and theory for progressive collapse resistance of ECC-concrete composite beam-column substructures

  • Weihong Qin;Wang Song;Peng Feng;Zhuo Xi;Tongqing Zhang
    • Structural Engineering and Mechanics
    • /
    • v.85 no.1
    • /
    • pp.65-80
    • /
    • 2023
  • To explore the effect of Engineered Cementitious Composite (ECC) on improving the progressive collapse resistance of reinforced concrete frames under a middle column removal scenario, six beam-column substructures were tested by quasistatic vertical loading. Among the six specimens, four were ECC-concrete composite specimens consisting of different depth of ECC at the bottom or top of the beam and concrete in the rest of the beam, while the other two are ordinary reinforced concrete specimens with different concrete strength grades for comparison. The experimental results demonstrated that ECC-concrete composite specimens can improve the bearing capacity of a beam-column substructure at the stages of compressive arch action (CAA) and catenary action in comparison with ordinary concrete specimen. Under the same depth of ECC, the progressive collapse resistance of a specimen with ECC at the beam bottom was superior to that at the beam top. With the increase of the proportion of ECC arranged at the beam bottom, the bearing capacity of a composite substructure was increased, but the increase rate slows down with the proportion. Meanwhile, the nonlinear numerical analysis software MSC Marc was used to simulate the whole loading process of the six specimens. Theoretical formulas to calculate the capacities of ECC-concrete composite specimens at the stages of flexural action, CAA and catenary action are proposed. Based on the research results, this study suggests that ECC should be laid out at the beam bottom and the layout depth should be within 25% of the total beam depth.

Applications of Displacement Response Estimation Algorithm Using Mode Decomposition Technique to Existing Bridges (모드분해기법을 이용한 변위응답추정 알고리즘의 실교량 적용)

  • Chang, Sung-Jin;Kim, Nam-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.257-264
    • /
    • 2010
  • Generally, estimations on the displacement as an important factor in evaluating the safety of large structures could be a barometer assessing whether the condition of the structure is deteriorating. Practically, it is not easy how to measure the displacement response to large structures like suspension bridges. In this study, as a method for estimation displacement response from strain signals, mode decomposition technique is proposed. Total displacement response is estimated by superposing quasistatic displacement response and modal displacement responses in dominant modes with larger contributions after estimating the modal displacement responses. If foiled strain gauges are used to measure strain signals, there would likely to generate electric noise, what's more, the more measuring points there are the more economic burden it could be. In order to solve such problems, fiber optic bragg-grating(FBG) sensors were used, which have multi-point measurements with no effect on electric noises. Therefore, the experiment was performed through dynamic load test of suspension bridge and plate-girder bridge to review the possibility for using mode decomposition technique.