• Title/Summary/Keyword: quasi-static force

Search Result 127, Processing Time 0.028 seconds

Quasi-Static Test for Seismic Performance of R/C Bridge Piers Retrofitted with Glassfibers (준정적실험에 의한 섬유보강된 철근콘크리트 교각의 내진성능 평가)

  • 이대형;이재형;정영수;박진영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.871-876
    • /
    • 2001
  • Recent earthquakes in California and Japan caused extensive damage to highway bridge structures. It is also thought that during probable earthquakes bridge structures in Korea could be failed due to the structural deficiencies, which were nonseismically designed and constructed before 1992. In these regards, innovative strengthening methods have been developed to repair reinforced concrete bridge columns, especially by glassfiber sheet bonding methods which are widely used today. The primary objective of this research is to investigate the seismic behavior of RC bridge columns retrofitted with composite straps and to propose pertinent guidelines of repair and rehabilitation method for earthquake resistant design procedure of RC bridges which are located in low or moderate seismicity regions. Six scaled-down concrete test specimens were made with test variables such as lap splice ratio, axial force ratio, confinement ratio, composite straps in the plastic hinge region. Pertinent design guidelines could be developed for the earthquake resistant design of RC bridge piers retrofitted with glassfibers in low or moderate seismic region.

  • PDF

Finite Element Analysis of an Orthogonal Cutting Process with Low Speed (2차원 저속절삭에 대한 유한요소 해석)

  • Kim, Kug-Weon;Ahn, Tae-Kil;Lee, Woo-Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.2
    • /
    • pp.10-15
    • /
    • 2006
  • An introduction to orthogonal cutting model by FEM is given, followed by a review of similar work. The cutting process is treated as quasi-static and strain rate insensitive, so the model is applicable only to low speed cutting operation. Chip separation is accomplished along a predefined cutting path by means of an element death procedure. Contact elements with friction capability are used to model the interaction between the tool and the workpiece. FEM results are compared with cutting experiments with low speed for brass, and good correlations are found.

  • PDF

Relaxation Phenomena observed for Single Polymer Chains

  • Watanabe, Kenji;Ohno, Naoto;Nakajima, Ken;Nishi, Toshio
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.341-341
    • /
    • 2006
  • Nanofishing enabled us to stretch a single polymer chain with picking it at its two modified termini using atomic force microscope (AFM). Stress-strain curves obtained to date had been the result on slow pulling events and therefore observed phenomena had been interpreted as quasi-static responses. In this study, we extended the capability of nanofishing to the phenomena far from equilibrium state by giving much faster pulling speeds. We could observe a momental increase entanglement and a successive stress relaxation.

  • PDF

A Study on Failure Behavior of Structures by Modified Distinct Element Method (수정개별요소법을 이용한 구조물의 파괴거동에 관한 연구)

  • 김문겸;오금호;김상훈;김우진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.10a
    • /
    • pp.210-217
    • /
    • 1996
  • Under strong shock loads including earthquake or blast, structures may start to crack in stress concentrated members. The continuous behavior of the structure changes to the discontinuous. In this study, numerical method analyzing continuous and discontinuous behavior of a structure is developed using a modified distinct element method. Equations of motion of each distinct element are integrated using the central difference method, one of the finite difference methods. Interactions between he elements are considered by an element and pore spring. The forces acting in the center of an element include contact stress transferred by element spring; tensile stress by pore spring; and external traction such as earthquake or blast load. To verify the proposed method, the behavior of the cantilever beam subject to the quasi-static concentrated force at the end is investigated. The failure behavior of the simply supported beam subject to the strong shock at the center is studied. The proposed method can predict the failure behavior of the structure due to the shock loading and the post-failure discontinuous behavior of the structure.

  • PDF

Dry friction losses in axially loaded cables

  • Huang, Xiaolun;Vinogradov, Oleg G.
    • Structural Engineering and Mechanics
    • /
    • v.4 no.3
    • /
    • pp.330-344
    • /
    • 1996
  • A model of a cable comprising interacting wires with dry friction forces at the interfaces is subjected to a quasi-static cyclic loading. The first cycle of this process, comprising of axial loading, unloading and reloading is investigated analytically. Explicit load-elongation relationships are obtained for all of the above phases of the cycle. An expression for the hysteretic losses is also obtained in an explicit form. It is shown that losses are proportional to the third power of the amplitude of the oscillating axial force, and are in inverse proportion to the interwire friction forces. The results obtained are used to introduce a model of a cable as a solid rod with an equivalent stiffness and damping properties of the rod material. It is shown that the stiffness of the equivalent rod is weakly nonlinear, whereas the viscous damping coefficient is proportional to the amplitude of the oscillation. Some numerical results illustrating the effect of cable parameters on the losses are given.

Analysis of Transmission Load for Spur Gear Using Contact Theory (접촉 이론에 의한 스퍼 기어의 전달 하중 해석)

  • 독고욱;김형렬
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.198-206
    • /
    • 2000
  • The transmission load of gear devices is important factor in the design of gear system. To design gear system precisely, an analysis and calculation methods for transmission load of gears are demanded. The purpose of this study is to develop a computer program for analyzing tooth load sharing of a spur gear system by means of the contact theory. In this paper, load transmission characteristics is identified with elastic contact problem which is assumed to quasi-static equilibrium. The modeling of spur gear tooth is accomplished by application of I-DEAS.

  • PDF

Load deformation characteristics of shallow suspension footbridge with reverse profiled pre-tensioned cables

  • Huang, Ming-Hui;Thambiratnam, David P.;Perera, Nimal J.
    • Structural Engineering and Mechanics
    • /
    • v.21 no.4
    • /
    • pp.375-392
    • /
    • 2005
  • Cable supported structures offer an elegant and economical solution for bridging over long spans with resultant low material content and ease of construction. In this paper, a model of shallow cable supported footbridge with reverse profiled pre-tensioned cables is treated and its load deformation characteristics under different quasi-static loads are investigated. Effects of important parameters such as cable sag and pre-tension are also studied. Numerical results performed on a 3D model show that structural stiffness of this bridge (model) depends not only on the cable sag and cross sectional areas of the cables, but also on the pre-tension in the reverse profiled cables. The tension in the top supporting cables can be adjusted to a high level by the pre-tension in the reverse profiled bottom cables, with the total horizontal force in the bridge structure remaining reasonably constant. It is also evident that pre-tensioned horizontally profiled cables can greatly increase the lateral horizontal stiffness and suppress the lateral horizontal deflection induced by eccentric vertical loads.

Seismic performances of steel reinforced concrete bridge piers

  • Deng, Jiangdong;Liu, Airong;Yu, Qicai;Peng, Guoxing
    • Steel and Composite Structures
    • /
    • v.21 no.3
    • /
    • pp.661-677
    • /
    • 2016
  • The quasi static test of the steel reinforced concrete (SRC) bridge piers and rigid frame arch bridge structure with SRC piers was conducted in the laboratory, and the seismic performance of SRC piers was compared with that of reinforced concrete (RC) bridge piers. In the test, the failure process, the failure mechanism, hysteretic curves, skeleton curves, ductility coefficient, stiffness degradation curves and the energy dissipation curves were analyzed. According to the $M-{\Phi}$ relationship of fiber section, the three-wire type theoretical skeleton curve of the lateral force and the pier top displacement was proposed, and the theoretical skeleton curves are well consistent with the experimental curves. Based on the theoretical model, the effects of the concrete strength, axial compression ratio, slenderness ratio, reinforcement ratio, and the stiffness ratio of arch to pier on the skeleton curve were analyzed.

Numerical Tests of Large Mass Method for Stress Calculation of Euler-Bernoulli Beams Subjected to Support Accelerations (지지점 가속도에 의해 가진되는 보의 응력계산에 대한 거대질량법의 정확도)

  • Kim, Yong-Woo;Choi, Nam Seok;Jhung, Myung Jo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.188-193
    • /
    • 2013
  • The large mass method for dynamic analysis of statically determinate beams subjected to in-phase support motions is justified by showing that the equation of motion of the beams under consideration is equivalent to that of large mass model of the beam when an appropriate large mass ratio is employed. The accuracy of the stress responses based on the beam large mass method is investigated through careful numerical tests. The numerical results are compared to analytic solutions and the comparison shows that the large mass method yields not only the time history of motion but also the distributions of bending moment and shear force accurately.

  • PDF

Evaluation of Damage Index for Reinforced Concrete Column according to Lap-splice, Number of Cycle, Axial Load and Confinement steel Ratio (철근콘크리트 교각의 겹침이음, 하중재하 횟수, 축하중비 및 구속철근비에 따른 손상도 평가)

  • 이대형;정영수;박창규
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.271-279
    • /
    • 2003
  • The objective of this study is to evaluate the damage of the reinforced concrete bridge piers. For the purpose of this research, twelve reinforced concrete specimens were fabricated and experimented with quasi-static test method. The selected test parameters are lap splice, axial load ratio, confinement steel ratio and number of loading cycle. The method of evaluate of damage index is the model proposed by Park and Ang. In accordance with this research, the most effective test parameter is lap splice of longitudinal steel. Therefore, the retrofit scheme of reinforced concrete bridge piers with lap splice of longitudinal steel, which was constructed before 1992, must be settled without delay. Otherwise, the effect of axial force is trivial. The more confinement steel is less damage index and more loading cycle lead to raise damage. The damage statement proposed Park and Ang is the same with experimental results.

  • PDF