• Title/Summary/Keyword: quasi-static force

Search Result 127, Processing Time 0.025 seconds

Quasi-static Characteristics in Radial Direction of 100 kWh Class Superconductor Bearing (100 kWh급 초전도 베어링의 지름방향 준정적 특성)

  • Jung, S.Y.;Park, B.J.;Han, Y.H.;Park, B.C.;Lee, J.P.;Han, S.C.
    • Progress in Superconductivity
    • /
    • v.12 no.1
    • /
    • pp.27-31
    • /
    • 2010
  • A superconductor flywheel energy storage system (SFES) is an electro-mechanical battery which transforms electrical energy into mechanical energy for storage, and vice versa. Many aspects of the quasi-static behavior of flywheel rotors still need to be studied closely, and the rotors require a stable and highly efficient supporting system such as high temperature superconductor (HTS) bearings, which offer dynamic stability without the use of active control. Quasi-static properties of HTS bearings in the radial direction provide data to solve problems which may occur in a running system. Since stiffness in countering rotor vibration is the main parameter for designing an HTS bearing system, we investigated the quasi-static properties of the magnetic force between permanent magnets(PMs) and HTS bulks in the radial direction. We measured radial stiffness, and discovered that bearing stiffness varied greatly depending on the number of active HTS bulks. This is valuable data for predicting the change in stiffness during partial HTS bearing failure. The quasi-static test results are used for optimal design and performance prediction for the 100 kWh class superconductor bearing.

Contact forces generated by fallen debris

  • Sun, Jing;Lam, Nelson;Zhang, Lihai;Gad, Emad;Ruan, Dong
    • Structural Engineering and Mechanics
    • /
    • v.50 no.5
    • /
    • pp.589-603
    • /
    • 2014
  • Expressions for determining the value of the impact force as reported in the literature and incorporated into code provisions are essentially quasi-static forces for emulating deflection. Quasi-static forces are not to be confused with contact force which is generated in the vicinity of the point of contact between the impactor and target, and contact force is responsible for damage featuring perforation and denting. The distinction between the two types of forces in the context of impact actions is not widely understood and few guidelines have been developed for their estimation. The value of the contact force can be many times higher than that of the quasi-static force and lasts for a matter of a few milli-seconds whereas the deflection of the target can evolve over a much longer time span. The stiffer the impactor the shorter the period of time to deliver the impulsive action onto the target and consequently the higher the peak value of the contact force. This phenomenon is not taken into account by any contemporary codified method of modelling impact actions which are mostly based on the considerations of momentum and energy principles. Computer software such as LS-DYNA has the capability of predicting contact force but the dynamic stiffness parameters of the impactor material which is required for input into the program has not been documented for debris materials. The alternative, direct, approach for an accurate evaluation of the damage potential of an impact scenario is by physical experimentation. However, it can be difficult to extrapolate observations from laboratory testings to behaviour in real scenarios when the underlying principles have not been established. Contact force is also difficult to measure. Thus, the amount of useful information that can be retrieved from isolated impact experiments to guide design and to quantify risk is very limited. In this paper, practical methods for estimating the amount of contact force that can be generated by the impact of a fallen debris object are introduced along with the governing principles. An experimental-calibration procedure forming part of the assessment procedure has also been verified.

Quasi-zero-stiffness Characteristic of a Passive Isolator Using Flexures under Compression Force (압축력이 작용하는 유연보를 이용한 수동 제진기의 준영강성 특성)

  • Kim, Kyoung-Hong;Ahn, Hyeong-Joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.321-321
    • /
    • 2009
  • This paper presents quasi-zero-stiffness (QZS) characteristic of a passive isolator using flexures under compression force. The passive isolator consists of a positive stiffness element (a vertical coil spring) and a negative stiffness element (flexures under compression force), and their proper combination of the positive and negative stiffness elements can produce both substantial static and zero dynamic stiffness, so called QZS. Firstly, a nonlinear dimensionless expression of a flexure under compression force is derived. A dynamic model of the passive isolator is developed and numerical simulations of its time and frequency response are performed. Then, undesirable nonlinear vibration is quantified using a period doubling bifurcation diagram and a Poincare's map of the isolator under forced excitation. Finally, experiments are performed to validate the QZS characteristic of the passive isolator.

  • PDF

Experimental and numerical study on energy absorption of lattice-core sandwich beam

  • Taghipoor, Hossein;Noori, Mohammad Damghani
    • Steel and Composite Structures
    • /
    • v.27 no.2
    • /
    • pp.135-147
    • /
    • 2018
  • Quasi-static three-point bending tests on sandwich beams with expanded metal sheets as core were conducted. Relationships between the force and displacement at the mid-span of the sandwich beams were obtained from the experiments. Numerical simulations were carried out using ABAQUS/EXPLCIT and the results were thoroughly compared with the experimental results. A parametric analysis was performed using a Box-Behnken design (BBD) for the design of experiments (DOE) techniques and a finite element modeling. Then, the influence of the core layers number, size of the cell and, thickness of the substrates was investigated. The results showed that the increase in the size of the expanded metal cell in a reasonable range was required to improve the performance of the structure under bending collapse. It was found that core layers number and size of the cell was key factors governing the quasi-static response of the sandwich beams with lattice cores.

Study of Crush Strength of Aluminum Honeycomb for Shock Absorber of Lunar Lander (달착륙선 충격흡수장치용 알루미늄 허니콤의 Crush Strength에 관한 연구)

  • Kim, Shin;Lee, Hyuk-Hee;Kim, Hyun-Duk;Park, Jung-Sun;Im, Jae-Hyuk;Hwang, Do-Soon
    • Journal of Aerospace System Engineering
    • /
    • v.4 no.3
    • /
    • pp.1-5
    • /
    • 2010
  • Understanding the crushing behaviour of aluminum honeycombs under dynamic loading is useful for crash simulations of vehicles and for design of impacting energy absorbers. In the study of honeycomb crushing under quasi-static, dynamic loading, the most important parameter is crush strength. Crush strength is indicated to energy absorption characteristic of aluminum honeycomb. In this study, Using Finite Element Analysis carried out crush strength of hexagonal aluminum honeycomb then the results was compared with Quasi-static test. Consequently, Crush strength is different in quasi-static loading and dynamic loading about 16%.

  • PDF

Shape Design of Hinge Stopper to Improve Refrigerator Door Opening Force (냉장고 도어 개방력 개선을 위한 힌지 스토퍼의 형상설계)

  • Seo, Ji-Hwan;Lee, Sanghoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.7
    • /
    • pp.66-71
    • /
    • 2021
  • In this study, the shape design optimization of a refrigerator door hinge stopper was performed to reduce the discrepancy in the opening forces of the left and right doors of a double-door refrigerator. A finite element model was constructed and analyzed by quasi-static analyses to evaluate the structural performance of the door hinge stopper. The reaction moment calculated at the hinge axis was used as a measure of the door opening and closing forces. The design objective is to increase the door opening force by 50% while maintaining the door closing force and the maximum stress calculated in the body of the hinge stopper at the current level. A new design concept with a contacting slot was proposed to decouple the door closing and opening forces. Shape optimization was performed to determine the dimensions of the new design of the hinge stopper, and the rib pattern was determined by topological optimization to further increase the door opening force. It was observed that the new design met all design requirements.

The research on static and dynamic mechanical properties of concrete under the environment of sulfate ion and chlorine ion

  • Nie, Liangxue;Xu, Jinyu;Bai, Erlei
    • Computers and Concrete
    • /
    • v.20 no.2
    • /
    • pp.205-214
    • /
    • 2017
  • The Hydraulically driven test system and ${\Phi}100mm$ split Hopkinson pressure bar(SHPB) test device were employed to research the quasi-static and dynamic mechanical properties of concrete specimens which has been immersed for 60 days in sodium sulfate (group S1) and sodium chloride (group S2) solution, the evolution of their mass during corrosive period was explored at the same time, and the mechanism of performances lost was analyzed from the microscopic level by using scanning electron microscope. Results of the experimental indicated that: their law of mass both presents the trend of continuous rising during corrosive period, and it increases rapidly on the early days, the mass growth of group S1 and group S2 in first 7 days are 76.78% and 82.82% of their total increment respectively; during the corrosive period, the quasi-static compressive strength of specimens in two groups are significantly decreased, both of which present the trend of increase first and then decrease, the maximum growth rate of group S1 and group S2 are 7.52% and 12.71% respectively, but they are only 76.23% and 82.84% of specimens which under normal environment (group N) on day 60; after immersed for 60 days, there were different decrease to dynamic compressive strength and specific energy absorption, and so as their strain rate sensitivities. So the high salinity environment has a significant effect of weaken the quasi-static and dynamic mechanical performance of concrete.

An evaluation of iced bridge hanger vibrations through wind tunnel testing and quasi-steady theory

  • Gjelstrup, H.;Georgakis, C.T.;Larsen, A.
    • Wind and Structures
    • /
    • v.15 no.5
    • /
    • pp.385-407
    • /
    • 2012
  • Bridge hanger vibrations have been reported under icy conditions. In this paper, the results from a series of static and dynamic wind tunnel tests on a circular cylinder representing a bridge hanger with simulated thin ice accretions are presented. The experiments focus on ice accretions produced for wind perpendicular to the cylinder at velocities below 30 m/s and for temperatures between $-5^{\circ}C$ and $-1^{\circ}C$. Aerodynamic drag, lift and moment coefficients are obtained from the static tests, whilst mean and fluctuating responses are obtained from the dynamic tests. The influence of varying surface roughness is also examined. The static force coefficients are used to predict parameter regions where aerodynamic instability of the iced bridge hanger might be expected to occur, through use of an adapted theoretical 3-DOF quasi-steady galloping instability model, which accounts for sectional axial rotation. A comparison between the 3-DOF model and the instabilities found through two degree-of-freedom (2-DOF) dynamic tests is presented. It is shown that, although there is good agreement between the instabilities found through use of the quasi-steady theory and the dynamic tests, discrepancies exist-indicating the possible inability of quasi-steady theory to fully predict these vibrational instabilities.

Prediction of Ballistic Limit for Composite Laminates Subjected to High-velocity Impact Using Static Perforation Test (정적압입 관통 실험을 이용한 복합재 적층판의 고속충격 탄도한계속도 예측)

  • You, Won-Young;Kim, In-Gul;Lee, Seokje;Kim, Jong-Heon
    • Composites Research
    • /
    • v.26 no.1
    • /
    • pp.21-28
    • /
    • 2013
  • The ballistic limit of Carbon/Epoxy composite laminates with the finite effective area are predicted by using the quasi-static perforation test and semi-empirical formula. The perforation energy were calculated from force-displacement curve in quasi-static perforation test. Also, the actual ballistic limit and penetration energy were obtained through the high-velocity impact test. The quasi-static perforation test and high-velocity impact test were conducted for the specimens with 3 different effective areas. In the high-velocity impact test, the air gun impact tester were used, and the ballistic and residual velocity was measured. The required inputs for the semi-empirical formula were determined by the quasi-static perforation tests and high-velocity impact tests. The comparison between semi-empirical formula and high-velocity impact test results were conducted and examined. The ballistic limits predicted by semi-empirical formula were agreed well with high-velocity impact test results.

Experimental Investigation on the Behaviour of CFRP Laminated Composites under Impact and Compression After Impact (CAI) (충격시 CFRP 복합재 판의 거동과 충격후 압축강도에 관한 실험적 연구)

  • Lee, J.;Kong, C.;Soutis, C.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.129-134
    • /
    • 2003
  • The importance of understanding the response of structural composites to impact and CAI cannot be overstated to develop analytical models for impact damage and CAI strength predictions. This paper presents experimental findings observed from quasi-static lateral load tests, low velocity impact tests, CAI strength and open hole compressive strength tests using 3mm thick composite plates ($[45/-45/0/90]_{3s}$ - IM7/8552). The conclusion is drawn that damage areas for both quasi-static lateral load and impact tests are similar and the curves of several drop weight impacts with varying energy levels (between 5.4 J and 18.7 J) fallow the static curve well. In addition, at a given energy the peak force is in good agreement between the static and impact cases. From the CAI strength and open hole compressive strength tests, it is identified that the failure behaviour of the specimens was very similar to that observed in laminated plates with open holes under compression loading. The residual strengths are in good agreement with the measured open hole compressive strengths, considering the impact damage site as an equivalent hole. The experimental findings suggest that simple analytical models for the prediction of impact damage area and CAI strength can be developed on the basis of the failure mechanism observed from the experimental tests.

  • PDF