• 제목/요약/키워드: quasi-sliding mode

검색결과 25건 처리시간 0.023초

준 슬라이딩 모드 제어 기법을 이용한 모델 추종 비행제어 시스템 설계 (Model Following flight Control System Design)

  • 최동균;김신;김종환
    • 제어로봇시스템학회논문지
    • /
    • 제6권12호
    • /
    • pp.1133-1145
    • /
    • 2000
  • In this paper a model following flight control system design using the discrete time quasi-sliding mode control method is described. The quasi-sliding mode is represented as the sliding mode band, not as the sliding surface. The quasi-sliding mode control is composed of the equivalent control for the nominal system without uncertainties and disturbances and the additive control compensating the uncertainties and disturbances. The linearized plant on the equilibrium point is used in designing a flight control system and the stability conditions are proposed for the model uncertainties. Pseudo-state feedback control which uses the model variables for the unmeasured states is proposed. The proposed method is applied to the design of the roll attitude and pitch load factor control of a bank-to-turn missile. The performance is verified through the nonlinear six degrees of freedom flight simulation.

  • PDF

The Generator Excitation Control Based on the Quasi-sliding Mode Pseudo-variable Structure Control

  • Hu, Jian;Fu, Lijun
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권4호
    • /
    • pp.1474-1482
    • /
    • 2018
  • As an essential means of generator voltage regulation, excitation control plays an important role in controlling the stability of the power system. Therefore, the reasonable design of an excitation controller can help improve the system stability. In order to raise the robustness of the generator exciting system under outside interference and parametric perturbation and eliminate chattering in the sliding mode control, this paper presents a generator excitation control based on the quasi-sliding mode pseudo-variable structure control. A mathematical model of the synchronous generator is established by selecting its power, speed and voltage deviation as state variables. Then, according to the existing conditions of the quasi-sliding mode, a quasi-sliding mode pseudo-variable structure controller is designed, and the parameters of the controller are obtained with the method of pole configuration. Simulations show that compared with the existing methods, the proposed method is not only useful for accurate voltage regulation, but also beneficial to improving the robustness of the system at a time when perturbance happens in the system.

수레-2축역진자 시스템의 SIIM 퍼지 의사-슬라이딩 모드 제어에 관한 연구 (A Study on the SIIM Fuzzy Quasi-Sliding Mode Control for the Double Inverted Pendulum on a Cart)

  • 채창현;김성로
    • 한국기계가공학회지
    • /
    • 제17권1호
    • /
    • pp.116-121
    • /
    • 2018
  • In this paper, we propose the SIIM fuzzy Quasi-sliding mode controller for the system of a double inverted pendulum on a cart. Since it is difficult to handle this 6th-order system, we decoupled the entire system into three $2^{nd}$ order subsystem, and we designed the SIIM fuzzy Quasi-sliding mode controller for each subsystem, which was easy and did not require the derivation of the equivalent control. The stability of the entire system is guaranteed using Lyapunov function. The validity and robustness of the proposed controller are demonstrated through the computer simulation, and the results are compared with the results of former studies.

A New Robust Digital Sliding Mode Control with Disturbance Observer for Uncertain Discrete Time Systems

  • Lee, Jung-Hoon
    • 전기전자학회논문지
    • /
    • 제15권2호
    • /
    • pp.149-156
    • /
    • 2011
  • In this paper, a new discrete variable structure controller based on a new sliding surface and discrete version of the disturbance observer is suggested for the control of uncertain linear systems. The reaching phase is completely removed by introducing a new proposed sliding surface. The discrete version of the disturbance observer is derived for the effective compensation of the effect of uncertainties and disturbances. A corresponding control input with the disturbance compensation is selected to guarantee the quasi sliding mode on the predetermined sliding surface for guaranteeing the designed output in the sliding surface from any initial condition to the origin for all the parameter variations and disturbances. By using Lyapunov function, the closed loop stability and the existence condition of the quasi sliding mode is proved. Finally, an illustrative example is presented to show the effectiveness of the algorithm.

Sliding Mode Control of Three-Phase Four-Leg Inverters via State Feedback

  • Yang, Long-Yue;Liu, Jian-Hua;Wang, Chong-Lin;Du, Gui-Fu
    • Journal of Power Electronics
    • /
    • 제14권5호
    • /
    • pp.1028-1037
    • /
    • 2014
  • To optimize controller design and improve static and dynamic performances of three-phase four-leg inverter systems, a compound control method that combines state feedback and quasi-sliding mode variable structure control is proposed. The linear coordinate change matrix and the state variable feedback equations are derived based on the mathematical model of three-phase four-leg inverters. Based on system relative degrees, sliding surfaces and quasi-sliding mode controllers are designed for converted linear systems. This control method exhibits the advantages of both state feedback and sliding mode control. The proposed controllers provide flexible dynamic control response and excellent stable control performance with chattering suppression. The feasibility of the proposed strategy is verified by conducting simulations and experiments.

아산시간 가변구조 시스템에서 준 슬라이딩 모드 조건에 관한 연구 (A Study on the Quasi-Sliding Mode Condition in Discrete Time Variable Structure Systems)

  • 이강웅;최계근
    • 대한전자공학회논문지
    • /
    • 제25권8호
    • /
    • pp.899-905
    • /
    • 1988
  • In this paper, we suggest a new quasi-sliding mode condition with a wighting factor which guarantees all the states to reach switching planes and improves the convergence of the state trajectories. The result of computer simulation shows that by the suitable selection of a weighting factor, all the state trajectories reach switching planes and enter the sliding mode having the property of the insensitivity to parameter variation and disturbances.

  • PDF

불확실 이산 시스템을 위한 외란관측기를 갖는 새로운 둔감한 이산 정적 출력 궤환 가변구조제어기 (A New Robust Discrete Static Output Feedback Variable Structure Controller with Disturbance Observer for Uncertain Discrete Systems)

  • 이정훈
    • 전기학회논문지
    • /
    • 제59권3호
    • /
    • pp.630-635
    • /
    • 2010
  • In this paper, a new discrete static output feedback variable structure controller based on a new dynamic-type sliding surface and output feedback discrete version of the disturbance observer is suggested for the control of uncertain linear systems. The reaching phase is completely removed by introducing a new proposed dynamic-type sliding surface. The output feedback discrete version of disturbance observer is derived for effective compensation of uncertainties and disturbance. A corresponding control with disturbance compensation is selected to guarantee the quasi sliding mode on the predetermined dynamic-type sliding surface for guaranteeing the designed output in the dynamic-type sliding surface from any initial condition for all the parameter variations and disturbances. Using Lyapunov function, the closed loop stability and the existence condition of the quasi sliding mode is proved. Finally, an illustrative example is presented to show the effectiveness of the algorithm.

불확실 이산 시스템을 위한 외란관측기를 갖는 새로운 둔감한 이산 적분형 가변구조제어기 (A New Robust Discrete Integral Variable Structure Controller with Disturbance Observer for Uncertain Discrete Systems)

  • 이정훈
    • 전기학회논문지
    • /
    • 제59권6호
    • /
    • pp.1167-1172
    • /
    • 2010
  • In this paper, a new discrete integral variable structure controller based on the a new sliding surface and discrete version of the disturbance observer is suggested for the control of uncertain linear systems. The reaching phase is completely removed by introducing a new proposed integral sliding surface. The discrete version of disturbance observer is derived for effective compensation of uncertainties and disturbance. A corresponding control with disturbance compensation is selected to guarantee the quasi sliding mode on the predetermined integral sliding surface for guaranteeing the designed output in the integral sliding surface from any initial condition for all the parameter variations and disturbances. Using Lyapunov function, the closed loop stability and the existence condition of the quasi sliding mode is proved. Finally, an illustrative example is presented to show the effectiveness of the algorithm.

A Robust Dynamic Decoupling Control Scheme for PMSM Current Loops Based on Improved Sliding Mode Observer

  • Shen, Hanlin;Luo, Xin;Liang, Guilin;Shen, Anwen
    • Journal of Power Electronics
    • /
    • 제18권6호
    • /
    • pp.1708-1719
    • /
    • 2018
  • A complete current loop decoupling control strategy based on a sliding mode observer (SMO) is proposed to eliminate the influence of current dynamic coupling and back electromotive force (EMF) in the vector control of permanent magnet synchronous motors. With this strategy, current dynamic decoupling and back EMF compensation can be simultaneously achieved. Unlike conventional methods, the proposed strategy can avoid the disturbances caused by the parametric variations of motor systems and maintain the advantages of proportional integral (PI) controllers, which are robust and easy to operate. An improved SMO, which uses a special PI regulator other than a linear saturation function as the equivalent control law in the boundary layer of a sliding surface, is proposed to eliminate the estimated errors caused by the quasi-sliding mode and obtain a satisfactory decoupling performance. The stability and parameter robustness of the proposed strategy are also analyzed. Physical experimental results are presented to verify the validity of the method.

불확실 이산 시스템을 위한 외란관측기와 적분 동특성형 슬라이딩 면을 갖는 새로운 둔감한 이산 적분 정적 출력 궤환 가변구조제어기 (A New Robust Discrete Integral Static Output Feedback Variable Structure Controller with Disturbance Observer and Integral Dynamic-Type Sliding Surface for Uncertain Discrete Systems)

  • 이정훈
    • 전기학회논문지
    • /
    • 제59권7호
    • /
    • pp.1289-1294
    • /
    • 2010
  • In this paper, a new discrete integral static output feedback variable structure controller based on the a new integral dynamic-type sliding surface and output feedback discrete version of the disturbance observer is suggested for the control of uncertain linear systems. The reaching phase is completely removed by introducing a new proposed integral dynamic-type sliding surface. The output feedback discrete version of disturbance observer is presented for effective compensation of uncertainties and disturbance. A corresponding control with disturbance compensation is selected to guarantee the quasi sliding mode on the predetermined integral dynamic-type sliding surface for guaranteeing the designed output in the integral dynamic-type sliding surface from any initial condition for all the parameter variations and disturbances. Using discrete Lyapunov function, the closed loop stability and the existence condition of the quasi sliding mode is proved. Finally, an illustrative example is presented to show the effectiveness of the algorithm.