• Title/Summary/Keyword: quasi-linear approximation

Search Result 23, Processing Time 0.019 seconds

Boundary element characterization of coplanar waveguide discontinuities by quasi-static approximation (Quasi-static 근사에 의한 코플래너 도파로 불연속의 경계요소 해석)

  • 강연덕;이택경
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.6
    • /
    • pp.1-10
    • /
    • 1997
  • By using the boundary element method, the cahracterization and the circuit modelling of the coplanar waveguide (CPW) discontinuities are performed bvia quasi-static approximation. The capacitive equivalent circuits are obtained by developing the 3-D boundary element method with collocation method. On the triangular patch, the numerical scheme employed the linear basis functions and the analytic solutions of the integrals on the singular points. The capacitive discontinuities of gaps, end-gaps, and open-ends are characterized and the results compared with the conductor backed coplanar waveguides.

  • PDF

Iterative Series Methods in 3-D EM Modeling (급수 전개법에 의한 3차원 전자탐사 모델링)

  • Cho In-Ky;Yong Hwan-Ho;Ahn Hee-Yoon
    • Geophysics and Geophysical Exploration
    • /
    • v.4 no.3
    • /
    • pp.70-79
    • /
    • 2001
  • The integral equation method is a powerful tool for numerical electromagnetic modeling. But the difficulty of this technique is the size of the linear equations, which demands excessive memory and calculation time to invert. This limitation of the integral equation method becomes critical in inverse problem. The conventional Born approximation, where the electric field in the anomalous body is approximated by the background field, is very rapid and easy to compute. However, the technique is inaccurate when the conductivity contrast between the body and the background medium is large. Quasi-linear, quasi-analytical and extended Born approximations are novel approaches to 3-D EM modeling based on the linearization of the integral equations for scattered EM field. These approximation methods are much less time consuming than full integral equation method and more accurate than conventional Born approximation. They we, however, still approximate methods for 3-D EM modeling. Iterative series methods such as modified Born, quasi-linear and quasi-analytical can be used to increase the accuracy of various approximation methods. Comparisons of numerical performance against a full integral equation and various approximation codes show that the iterative series methods are very accurate and almost always converge. Furthermore, they are very fast and easy to implement on a computer. In this study, extended Born series method is developed and it shows more accurate result than that of other series methods. Therefore, Iterative series methods, including extended Born series, open principally new possibilities for fast and accurate 3-D EM modeling and inversion.

  • PDF

Comparison between quasi-linear theory and particle-in-cell simulation of solar wind instabilities

  • Hwang, Junga;Seough, Jungjoon;Yoon, Peter H.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.47.2-47.2
    • /
    • 2016
  • The protons and helium ions in the solar wind are observed to possess anisotropic temperature profiles. The anisotropy appears to be limited by various marginal instability conditions. One of the efficient methods to investigate the global dynamics and distribution of various temperature anisotropies in the large-scale solar wind models may be that based upon the macroscopic quasi-linear approach. The present paper investigates the proton and helium ion anisotropy instabilities on the basis of comparison between the quasi-linear theory versus particle-in-cell simulation. It is found that the overall dynamical development of the particle temperatures is quite accurately reproduced by the macroscopic quasi-linear scheme. The wave energy development in time, however, shows somewhat less restrictive comparisons, indicating that while the quasi-linear method is acceptable for the particle dynamics, the wave analysis probably requires higher-order physics, such as wave-wave coupling or nonlinear wave-particle interaction. We carried out comparative studies of proton firehose instability, aperiodic ordinary mode instability, and helium ion anisotropy instability. It was found that the agreement between QL theory and PIC simulation is rather good. It means that the quasilinear approximation enjoys only a limited range of validity, especially for the wave dynamics and for the relatively high-beta regime.

  • PDF

A Fixed Point Approach to the Stability of Quadratic Equations in Quasi Normed Spaces

  • Mirmostafaee, Alireza Kamel
    • Kyungpook Mathematical Journal
    • /
    • v.49 no.4
    • /
    • pp.691-700
    • /
    • 2009
  • We use the fixed alternative theorem to establish Hyers-Ulam-Rassias stability of the quadratic functional equation where functions map a linear space into a complete quasi p-normed space. Moreover, we will show that the continuity behavior of an approximately quadratic mapping, which is controlled by a suitable continuous function, implies the continuity of a unique quadratic function, which is a good approximation to the mapping. We also give a few applications of our results in some special cases.

Fast numerical methods for marine controlled-source electromagnetic (EM) survey data based on multigrid quasi-linear approximation and iterative EM migration (다중격자 준선형 근사 및 반복적 전자탐사 구조보정법에 기초한 해양 인공송신 전자탐사 자료의 빠른 수치해석 기법)

  • Ueda, Takumi;Zhdanov, Michael S.
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.1
    • /
    • pp.60-67
    • /
    • 2008
  • In this paper we consider an application of the method of electromagnetic (EM) migration to the interpretation of a typical marine controlled-source (MCSEM) survey consisting of a set of sea-bottom receivers and a moving electrical bipole transmitter. Three-dimensional interpretation of MCSEM data is a very challenging problem because of the enormous number of computations required in the case of the multi-transmitter and multi-receiver data acquisition systems used in these surveys. At the same time, we demonstrate that the MCSEM surveys with their dense system of transmitters and receivers are extremely well suited for application of the migration method. In order to speed up the computation of the migration field, we apply a fast form of integral equation (IE) solution based on the multigrid quasi-linear (MGQL) approximation which we have developed. The principles of migration imaging formulated in this paper are tested on a typical model of a sea-bottom petroleum reservoir.

Empirical Bayes Estimate for Mixed Model with Time Effect

  • Kim, Yong-Chul
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.2
    • /
    • pp.515-520
    • /
    • 2002
  • In general, we use the hierarchical Poisson-gamma model for the Poisson data in generalized linear model. Time effect will be emphasized for the analysis of the observed data to be collected annually for the time period. An extended model with time effect for estimating the effect is proposed. In particularly, we discuss the Quasi likelihood function which is used to numerical approximation for the likelihood function of the parameter.

Efficient Approximation Method for Constructing Quadratic Response Surface Model

  • Park, Dong-Hoon;Hong, Kyung-Jin;Kim, Min-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.7
    • /
    • pp.876-888
    • /
    • 2001
  • For a large scaled optimization based on response surface methods, an efficient quadratic approximation method is presented in the context of the trust region model management strategy. If the number of design variables is η, the proposed method requires only 2η+1 design points for one approximation, which are a center point and tow additional axial points within a systematically adjusted trust region. These design points are used to uniquely determine the main effect terms such as the linear and quadratic regression coefficients. A quasi-Newton formula then uses these linear and quadratic coefficients to progressively update the two-factor interaction effect terms as the sequential approximate optimization progresses. In order to show the numerical performance of the proposed method, a typical unconstrained optimization problem and two dynamic response optimization problems with multiple objective are solved. Finally, their optimization results compared with those of the central composite designs (CCD) or the over-determined D-optimality criterion show that the proposed method gives more efficient results than others.

  • PDF

STABILITY OF THE MONOMIAL FUNCTIONAL EQUATION IN QUASI NORMED SPACES

  • Mirmostafaee, Alireza Kamel
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.4
    • /
    • pp.777-785
    • /
    • 2010
  • Let X be a linear space and Y be a complete quasi p-norm space. We will show that for each function f : X $\rightarrow$ Y, which satisfies the inequality ${\parallel}{\Delta}_x^nf(y)\;-\;n!f(x){\parallel}\;{\leq}\;\varphi(x,y)$ for suitable control function $\varphi$, there is a unique monomial function M of degree n which is a good approximation for f in such a way that the continuity of $t\;{\mapsto}\;f(tx)$ and $t\;{\mapsto}\;\varphi(tx,\;ty)$ imply the continuity of $t\;{\mapsto}\;M(tx)$.

Crosstalk Analysis on Printed Circuit Board (인쇄뢰로기판의 누화해석)

  • 박경희;김제영;김수중
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.28A no.9
    • /
    • pp.700-707
    • /
    • 1991
  • Transmission line crosstalk of a printed circuit baord terminated with the linear resistive and nonlinear terminal network is analyzed. Based on a quasi-static approximation, crosstalk voltage is computed in frequency domain by applying the modal analysis. A scheme to calculate the maximum crosstalk voltage for a line terminated with the nonlinear digital gate is proposed. And also, crosstalk quantities are numerically obtained for the microstrip and strip line, and compared with the experimental data to validate relevance of this method.

  • PDF

ERROR ESTIMATES FOR A SINGLE PHASE QUASILINEAR STEFAN PROBLEM WITH A FORCING TERM

  • Ohm, Mi-Ray;Shin, Jun-Yong;Lee, Hyun-Young
    • Journal of applied mathematics & informatics
    • /
    • v.11 no.1_2
    • /
    • pp.185-199
    • /
    • 2003
  • In this paper, we apply finite element Galerkin method to a single-phase quasi-linear Stefan problem with a forcing term. We consider the existence and uniqueness of a semidiscrete approximation and optimal error estimates in $L_2$, $L_{\infty}$, $H_1$ and $H_2$ norms for semidiscrete Galerkin approximations we derived.