• Title/Summary/Keyword: quartz zone

Search Result 182, Processing Time 0.032 seconds

Characteristics of the Copper Mineralization in Tsogttsetsii Area, Mongolia (몽골 촉트체치 지역의 동 광화작용 특성)

  • Davaasuren, Otgon-Erdene;Lee, Bum Han;Kim, In Joon;Ryoo, Chung-Ryul;Heo, Chul-Ho
    • Journal of the Mineralogical Society of Korea
    • /
    • v.29 no.1
    • /
    • pp.23-34
    • /
    • 2016
  • Tsogttsetsii area, an intrusive complex associated with Cu porphyry mineralization, is located in the Gurvansaikhan island arc terrane of the Central Asian Orogenic belt, Southern Mongolia. We performed a reconnaissance survey in Tsogttsetsii area. Cu mineralization in Tsogttsetsii area is porphyry Cu type related with alkali granite intruded in Permian. Mineralogical and textural properties of the ores and associated minerals were analyzed using X-ray diffraction, thin section petrography, and Scanning electron microscopy-Energy dispersive spectroscopy (SEM-EDS). Ore minerals identified in polarizing microscope are magnetite, pyrite and bornite. Propylitic alteration zone occurs broadly in the area where malachite occurrences are shown to be spread intensively in alkali granite area. Quartz, sericite, chlorite and epidote were observed in the alteration zone samples. As results of XRD and SEM-EDS analysis, samples of copper oxides were composed mainly of malachite, cuprite and small amounts of quartz. Average and maximum Cu contents of samples collected from malachite occurrences area are 759 ppm and 6190 ppm, respectively. The characteristics of mineralization in Tsogttsetsii area is similar to Oyu Tolgoi Cu-Au (Mo) deposit and Tsagaan Suvarga Cu-Mo deposit which are 56 km south and 120 km northeast from Tsogttsetsii area, respectively. Characteristics of the study area, such as the geology, tectonic environment, lithology, mineralization, and alterations of the rocks within the survey area, resemble the characteristics of other porphyry deposits. Therefore further exploration including Induced Polarization (IP) survey for identifying subsurface orebody is required.

Geochemical Exploration for Metallic Mineral Resources on the Pacitan District, East Java, Indonesia (인도네시아 빠찌딴지역 금속광물자원에 대한 지화학탐사)

  • Han, Jin-Kyun;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.44 no.1
    • /
    • pp.1-10
    • /
    • 2011
  • The geology of the Pacitan district which occupies Southern mountain zone in the southwestern margin of East Java, Indonesia, consists of a pile of clastics and pyroclastics grading upwards into a series of sediments of Middle Miocene age which are intruded by a number of quartz porphyries and subvolcanic dacitic to andesitic bodies in after that time. The geochemical exploration in the Pacitan district to find out anomalous areas related with metallic mineral dispersion from the concealed ore deposits had been carried out using traditional exploration techniques of geological mapping, stream sediment, panned concentrate and outcrop sampling. The anomalous zones of each element were detected in the following areas: Gempol for Cu; Jompong for Au; Kasihan for Cu-Pb-Zn. The strongest Cu-Pb-Zn anomalous values are overlapped at the Kasihan area. The geochemical survey of soil was conducted with the geological survey at the Kasihan area. The statistical values were calculated by the statistical analysis method. The patterns for Cu, Pb and Zn are similar to the normal distribution. The anomalous values of copper-lead-zinc and/or copper and zinc are overlapped at five zones surrounding quartz porphyry at the central part of the Kasihan area. The area was interpreted and chosen as an anomalous zone related with stockwork and skam mineralization, extending to approximately NNW-SSE direction.

Characterization of Sericite Occurred in the Bobae Mine, Pusan, Korea (부산 보배광산산 견운모의 광물학적 특성)

  • Moon, Ji-Won;Moon, Hi-Soo
    • Economic and Environmental Geology
    • /
    • v.29 no.2
    • /
    • pp.129-138
    • /
    • 1996
  • The ores of the Bobae mine are mainly composed of sericite and quartz, and with appreciable amount of some other minerals such as andalusite. pyrophyllite, and albite, etc.. Sericite occurs in various a1teration zones having different crystal size and habit. Sericites can be c1assified into two types based on the crystal size; fine-grained and coarse-grained sericite. Fine-grained sericite occurs as an aggregate. Mineralogical characterizations of both types of sericites have been studied with various methods. Lattice parameters of two types of sericites occurred in various alteration zones are almost identical. but b parameter of coarse-grained sericite appears to be slight1y bigger than that of fine-grained aggregates. Average structural formula of fine- and coarse-grained sericite is $K_{1.44}Al_{3.86}(Si_{6.35}Al_{1.65})O_{20}(OH)_4$ and $K_{1.71}Al_{3.82}(Si_{6.20}Al_{1.80})O_{20}(OH)_4$, respectively. Structural formulae of coarse-grained sericites are close to that of muscovite. Infrared spectra show that there is slight distinction between sericites occurred in andalusite-pyrophyllite zone and other subzones. IR spectra of sericites due to Si-O vibration ($540{\sim}530cm^{-1}$) tend to shift to smaller wavenumber side from center to outer alteration zone. All samples have litt1e or no interstratified minerals. and this is demonstrated by Ir and DTA-TG results. It indicates that the Bobae mine is formed at relatively high temperature. That the ratio of quartz to sericite in ores varies greatly indicates that several discontinuous hydrothermal alteration processes have been involved.

  • PDF

Engineering Geological Implications of Fault Zone in Deep Drill Cores: Microtextural Characterization of Pseudotachylite and Seismic Activity (시추코어 단층대에서의 지질공학적 의미: 슈도타킬라이트의 미세조직의 특징과 지진활동)

  • Choo, Chang-Oh;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.27 no.4
    • /
    • pp.489-500
    • /
    • 2017
  • It is not rare that pseudotachylite, dark colored rock with glassy texture, is recognizable in deep core samples drilled up to 900 m from the surface. Pseudotachylite with widths varying few to 20 cm is sharply contacted or interlayered with the host rocks composed of Jurassic granite and Precambrian amphibolite gneiss, showing moderately ductile deformation or slight folding. Pseudotachylite occurring at varying depths in the deep drill core are slightly different in texture and thickness. There is evidence of fault gouge at shallower depths, although brittle deformation is pervasive in most drill cores and pseudotachylite is identified at random depth intervals. Under scanning electron microscope (SEM), it is evident that the surface of pseudotachylite is characterized by a smooth, glassy matrix even at micrometer scale and there is little residual fragments in the glass matrix except microcrystals of quartz with embayed shape. Such textural evidence strongly supports the idea that the pseudotachylite was generated through the friction melting related to strong seismic events. Based on X-ray diffraction (XRD) quantitative analysis, it consists of primary minerals such as quartz, feldspars, biotite, amphibole and secondary minerals including clay minerals, calcite and glassy materials. Such mineralogical features of fractured materials including pseudotachylite indicate that the fractured zone might form at low temperatures possibly below $300^{\circ}C$, which implies that the seismic activity related to the formation of pseudotachylite took place at shallow depths, possibly at most 10 km. Identification and characterization of pseudotachylite provide insight into a better understanding of the paleoseismic activity of deep grounds and fundamental information on the stability of candidate disposal sites for high-level radioactive waste.

Mineral Composition and Grain Size Distribution of Fault Rock from Yangbuk-myeon, Gyeongju City, Korea (경주시 양북면 단층암의 광물 조성과 입도 분포 특징)

  • Song, Su Jeong;Choo, Chang Oh;Chang, Chun-Joong;Chang, Tae Woo;Jang, Yun Deuk
    • Economic and Environmental Geology
    • /
    • v.45 no.5
    • /
    • pp.487-502
    • /
    • 2012
  • This paper is focused on mineral compositions, microstructures and distributional characters of remained grains in the fault rocks collected from a fault developed in Yongdang-ri, Yangbuk-myeon, Gyeongju City, Korea, using X-ray diffraction (XRD), optical microscope, laser grain size analysis and fractal dimension analysis methods. The exposed fault core zone is about 1.5 meter thick. On the average, the breccia zone is 1.2 meter and the gouge zone is 20cm thick, respectively. XRD results show that the breccia zone consists predominantly of rock-forming minerals including quartz and feldspar, but the gouge zone consists of abundant clay minerals such as chlorite, illite and kaolinite. Mineral vein, pyrite and altered minerals commonly observed in the fault rock support evidence of fault activity associated with hydrothermal alteration. Fractal dimensions based on box counting, image analysis and laser particle analysis suggest that mineral grains in the fault rock underwent fracturing process as well as abrasion that gave rise to diminution of grains during the fault activity. Fractal dimensions(D-values) calculated by three methods gradually increase from the breccia zone to the gouge zone which has commonly high D-values. There are no noticeable changes in D-values in the gouge zone with trend being constant. It means that the bulk-crushing process of mineral grains in the breccia zone was predominant, whereas abrasion of mineral grains in the gouge zone took place by continuous fault activity. It means that the bulk-crushing process of mineral grains in the breccia zone was predominant, whereas abrasion of mineral grains in the gouge zone took place by continuous fault activity. Mineral compositions in the fault zone and peculiar trends in grain distribution indicate that multiple fault activity had a considerable influence on the evolution of fault zones, together with hydrothermal alteration. Meanwhile, fractal dimension values(D) in the fault rock should be used with caution because there is possibility that different values are unexpectedly obtained depending on the measurement methods available even in the same sample.

Mineralogy and Geochemistry of Green-colored Cr-bearing Sericite from Hydrothermal Alteration Zone of the Narim Gold Deposit, Korea (나림 금광상의 열수변질대에서 산출되는 녹색크롬-견운모의 광물학적 및 지구화학적 특징)

  • Lee, Hyun Koo;Lee, Chan Hee
    • Economic and Environmental Geology
    • /
    • v.30 no.4
    • /
    • pp.279-289
    • /
    • 1997
  • Dark to pale green-colored, Cr-bearing sericites from hydrothermal alteration zone of the Narim gold deposit were investigated mineralogically and geochemically. The alteration zone is composed mineralogically of quartz, carbonate minerals and green sericite with minor amounts of chlorite, barite and sulfide minerals (pyrite, sphalerite, galena). The zone is enriched in As (967 to 1520 ppm), Cu (31 to 289 ppm), Ni (1027 to 1205 ppm), Pb (0.20 to 1.24 wt.%) and Zn (1.03 to 1.07 wt. %) compared with fresh rocks such as granitic gneiss, porphyritic biotite granite and basic dyke. The Cr, probably the chromophore element, is highly enriched in the alteration zone (1140 to 1500 ppm), host granitic gneiss (1200 ppm) and porphyritic biotite granite (1200 ppm). Occurrence and grain size of sericite are diverse, but most of the Cr-bearing sericites (150 to $200{\mu}m$ long and 20 to $30{\mu}m$ wide) occur along the boundaries between ore veins and host rocks (especially basic dyke and granitic gneiss). X-ray diffraction data of the sericite show its monoclinic form with unit-cell parameters of $a=5.202{\AA}$, $b=8.994{\AA}$, $c=20.103{\AA}$, ${\beta}=95.746^{\circ}$ and $V=935.83{\AA}^3$, which are similar with the normal 2M1-type muscovite. Representative chemical formula of the sericite is ($K_{1.54}Ca_{0.03}Na_{0.01}$)($Al_{3.42}Mg_{0.38}Cr_{0.14}Fe_{0.06}V_{0.02}$)($Si_{6.69}Al_{1.31}$)$O_{20}(OH)_4$. The Cr content increases with decrease of the octahedral Al content, and ranges from 0.36 to 2.58 wt.%. DTA and TG curves of the sericite show endothermic peaks at $342^{\circ}$ to $510^{\circ}$, $716^{\circ}$ to $853^{\circ}$ and $1021^{\circ}C$, which are due to the expulsion of hydroxyl group. The total weight loss by heating is measured to be about 8.8 wt. %, especially at $730^{\circ}C$. Infrared absorption experiments of the sericite show broad absorption band due to the O-H bond stretching vibration near the $3625cm^{-1}$, coupled with the 825 and $750cm^{-1}$ doublet. The vibration bands related with the H-O-Al and Si-O-Al bonds occur at $1030cm^{-1}$ and 500 to $700cm^{-1}$, respectively. Based on paragonite content of the sericite, the formation temperature of the Narim gold deposit is calculated to be $220{\pm}10^{\circ}C$.

  • PDF

Petrologic and Geomorphologic Characteristics of Micrographic Granite in the Ijin-ri Area, Ulsan (울산 이진리 미문상화강암의 암석학적 및 지형학적 특성 연구)

  • Kim, Sun-Woong;Kim, Haang-Mook;Hwang, Byoung-Hoon;Yang, Kyoung-Hee;Kim, Jin-Seop
    • The Journal of the Petrological Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.211-221
    • /
    • 2009
  • This study illustrates the relationship between the petrographic characteristics of micrographic granite and the topographic features around Ijin-ri. Light-brown to light- gray granite is composed of intergrown fine-grained quartz + orthoclase, displaying micrographic textures. Miarolitic cavities are abundant. Many micro-landforms including tor, tafoni, and gnamma occurred in the micrographic granite of the study area. Tafoni is dominant in the north and gnamma is dominant in south. From our study of the occurrence and textural properties, two alteration zones were clearly identified; one is an external zone (A) characterized by abundant of small sized miarolitic cavities and the other is an internal zone (B) having them less than zone A. The former is dominant in north, and the latter is dominant in south. Particular geomorphologic features such as fluting cores and raised rims are present in the Ijin-ri area. This suggests that development of miarolitic cavities played an important role in the formation of the various geomorphologic features. Consequently, the petrogenesis of the micrographic granite is related to geomorphologic features in the external zone typified by abundant tafoni such as the tiger rock, and the formation of a platform as micro-landforms is influenced by thetextural differences of host rock in the internal zone.

Elucidation of the Enrichment Mechanism of the Naturally Originating Fluorine Within the Eulwangsan, Yongyudo: Focusing on the Study of the Fault zone (용유도 을왕산 자연기원 불소의 부화기작 규명: 단층대 연구를 중심으로)

  • Lee, Jong-Hwan;Jeon, Ji-Hoon;Lee, Seung-Hyun;Kim, Soon-Oh
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.3
    • /
    • pp.377-386
    • /
    • 2022
  • In addition to anthropogenic origins, fluorine (F) is naturally enriched in rocks due to geological events, such as magma dissemination, hydrothermal alteration, mineralization, and fault activities. Generally, it has been well known that F is chiefly enriched in the region of igneous and metamorphic rocks, and biotite granite was mostly distributed in the study area. The F enrichment mechanism was not sufficiently elucidated in the previous studies, and the study on a fault zone was conducted to reveal it more precisely. The mineral composition of the fault zone was identical to that of the Eulwangsan biotite granite (EBG), but they were quantitatively different between the two areas. Compared with the EBG, the fault zone showed relatively higher contents of quartz and F-bearing minerals (fluorite, sericite) but lower contents of plagioclase and alkali feldspar. This difference was likely due to hydrothermal mineral alterations. The results of microscopic observations supported this, and the generation of F-bearing minerals by hydrothermal alterations was recognized in most samples. Accordingly, it might be interpreted that the mineralogical and petrological differences observed in the same-age biotite granite widely distributed in the Yongyudo was caused by the hydrothermal alterations due to small-scale geological events.

Mineralogy and Genesis of Hydrothermal Deposits in the Southeastern Part of Korean Peninsula : (5) Deogbong Napseok Deposit (우리나라 동남부 지역의 열수광상에 대한 광물학적 및 광상학적 연구:(5) 덕봉납석광상)

  • Kim, Soo-Jin;Choo, Chang-Oh;Kim, Won-Sa
    • Journal of the Mineralogical Society of Korea
    • /
    • v.7 no.1
    • /
    • pp.25-39
    • /
    • 1994
  • The Deogbong napseok clay deposit which is composed mainly of dickite and pyrophyllite has been formed by hydrothermal alteration of the Late Cretaceous volcanic rocks consisting of andesitic tuff and andesite. The mineralogy of the napseok ores and the hydrothermal alteration processes have been studied in order to know the nature of the interaction between minerals and fluids for the formation of the deposit. Chemical distribution shows that alkali elements and silica were mobile but alumina was relatively immobile during the hydrothermal processes. It is evident that enrichment of alumina and leaching of silica from the host rock led to the formation of the napseok ore, whereas the enrichment of silica in the outer zone of the deposit gave rise to the silica zone. A large amount of microcrystalline quartz closely associated with dickite and pyrophyllite suggests the increasing activity of silica. Thus Si which was released away from the argillic zone by the increasing activity of silica. Thus Si which was released away from the argillic zone by the increasing activity of silica solubility moved out precipitating in the margin of the deposit to form the silica zone. Variation in dickite crystallinity implies the local change in the stability of the system. Thermodynamic calculation shows that the invariant point of pyrophyllite-dickite (kaolinite)-diaspore-quartz assemblages at 500 bars in the system $Al_{2}O_{3}-SiO_{2}-H_{2}O$ is about 300 $^{\circ}C$. Based on the mineral assemblages and the experimental data reported, it is estimated that the main episode of hydrothermal alteration occurred at least above 270 to 300 $^{\circ}C$ and $X_{CO_2}$ <0.025. Mineral occurrence and chemical variation indicate that the activity of Al is high in the upper part of the deposit, whereas the activity of Si is high in the lower part and the margin of the deposit. The nonequilibrium phase relations observed in the Deogbong deposit might be due to local change in intensive thermodynamic variables and fluid transport properties that resulted in the formation of nonequilibrium phases b of several stages.

  • PDF

Chemical Behaviors of Elements and Mineral Compositions in Fault Rocks from Yangbuk-myeon, Gyeongju City, Korea (경주시 양북면 단층암의 원소거동과 광물조성 특성)

  • Song, Su Jeong;Choo, Chang Oh;Chang, Chun-Joong;Jang, Yun Deuk
    • The Journal of the Petrological Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.137-151
    • /
    • 2013
  • This study is focused on element behaviors and mineral compositions of the fault rock developed in Yongdang-ri, Yangbuk-myeon, Gyeongju City, Korea, using XRF, ICP, XRD, and EPMA/BSE in order to better understand the chemical variations in fault rocks during the fault activity, with emphasis on dependence of chemical mobility on mineralogy across the fault zone. As one of the main components of the fault rocks, $SiO_2$ shows the highest content which ranges from 61.6 to 71.0%, and $Al_2O_3$ is also high as having the 10.8~15.8% range. Alkali elements such as $Na_2O$ and $K_2O$ are in the range of 0.22~4.63% and 2.02~4.89%, respectively, and $Fe_2O_3$ is 3.80~12.5%, indicating that there are significant variations within the fault rock. Based on the chemical characteristics in the fault rocks, it is evident that the fault gouge zone is depleted in $Na_2O$, $Al_2O_3$, $K_2O$, $SiO_2$, CaO, Ba and Sr, whereas enriched in $Fe_2O_3$, MgO, MnO, Zr, Hf and Rb relative to the fault breccia zone. Such chemical behaviors are closely related to the difference in the mineral compositions between breccia and gouge zones because the breccia zone consists of the rock-forming minerals including quartz and feldspar, whereas the gouge zone consists of abundant clay minerals such as illite and chlorite. The alteration of the primary minerals leading to the formation of the clay minerals in the fault zone was affected by the hydrothermal fluids involved in fault activity. Taking into account the fact that major, trace and rare earth elements were leached out from the precursor minerals, it is assumed that the element mobility was high during the first stage of the fault activity because the fracture zone is interpreted to have acted as a path of hydrothermal fluids. Moving toward the later stage of fault activity, the center of the fracture zone was transformed into the gouge zone during which the permeability in the fault zone gradually decreased with the formation of clay minerals. Consequently, elements were effectively constrained in the gouge zone mostly filled with authigenic minerals including clay minerals, characterized by the low element mobility.