• Title/Summary/Keyword: quartz tube

Search Result 104, Processing Time 0.024 seconds

Fabrication and Property of Excimer Lamp Coated with Green-emitting Zn2SiO4:Mn2+ Phosphor Film (녹색발광 Zn2SiO4:Mn2+ 형광체가 코팅된 엑시머 램프의 제작 및 특성)

  • Kang, Busic;Jung, Hyunjee;Jeong, Yongseok;Son, Semo;Kim, Jongsu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.106-109
    • /
    • 2022
  • The green-emitting Zn2SiO4:Mn2+ phosphor film was evaluated in a xenon excimer lamp. The phosphor film with 2 ㎛ thick was formed of monolithic structure on the inner side of quartz through a long-time annealing process of coated ZnO solution doped with Mn2+ ion and SiO2 of quartz tube. The coated quartz was filled with 100 torr of xenon gas, and simultaneously both sides was melt and sealed. The xenon-field quartz tube was discharge by applying the voltage of 15 kV with a frequency of 26 kHz, and emitted the glow with dominant peak at 172 nm. The vacuum ultraviolet excited the inner-side coated Zn2SiO4:Mn2+ phosphor film, which emitted the pure and strong green light.

Study on Recovery of Polymeric Raw Materials from WastePolystyrene in Motor Oil using Microwave Thermal Decomposition (마이크로웨이브 열분해(熱分解)를 이용(利用)한 폐(廢) 폴리스티렌과 모터 오일 혼합물(混合物)로부터 고분자(高分子) 원료(原料) 물질(物質) 회수(回收)에 관한 연구(硏究))

  • Kang, Tae-Won
    • Resources Recycling
    • /
    • v.15 no.5 s.73
    • /
    • pp.11-16
    • /
    • 2006
  • A novel microwave-induced pyrolysis was used for the recovery of valuable products from waste polystyrene in motor oil. Quartz tube was introduced as microwave reactor and silicon carbide was used as the microwave absorbent. In the experiments, different pyrolysis conditions were applied, such as time range from 30 minutes to 1 hour and microwave input power range from 180 to 250W. The distillate products from pyrolysis were analyzed with GC/MS. Styrene, 1-methyl styrene, toluene, ethyl benzene were the four main products. Styrene recovery rate from polystyrene was around 50%. Temperature for the complete pyrolysis using microwave was around $300^{\circ}C$ which is much lower than that of conventional thermal pyrolysis.

Effect of ON/OFF Cycles of Ar Gas on Structural and Optical Properties of ZnO Nanostructure Grown by Vapor Phase Transport

  • Nam, Gi-Woong;Kim, Min-Su;Cho, Min-Young;Kim, So-A-Ram;Leem, Jae-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.415-415
    • /
    • 2012
  • ZnO nanostructures were synthesized by a vapor phase transport process in a single-zone furnace within a horizontal quartz tube with an inner diameter of 38 mm and a length of 485 mm. The ZnO nanostructures were grown on Au-catalyzed Si(100) substrates by using a mixture of zinc oxide and graphite powders. The growth of ZnO nanostructures was conducted at $800^{\circ}C$ for 30 min. High-purity Ar and $O_2$ gases were pushed through the quartz tube during the process at a flow rate of 100 and 10 sccm, respectively. The sequence of ON/OFF cycles of the Ar gas flow was repeated, while the $O_2$ flow is kept constant during the growth time. The Ar gas flow was ON for 1 min/cycle and that was OFF for 2 min/cycle. The structure and optical properties of the ZnO nanostructures were investigated by field-emission scanning electron microscope, X-ray diffraction, temperature-dependent photoluminescence. The preferred orientation of the ZnO nanostructures was along c-axis with hexagonal wurtzite structure.

  • PDF

Characterization of Linear Microwave Plasma using the Fluid Simulation (유체 시뮬레이션을 이용한 선형 마이크로웨이브 플라즈마의 특성 분석)

  • Seo, Kwon-Sang;Han, Moon-Ki;Kim, Dong-Hyun;Lee, Ho-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.4
    • /
    • pp.567-572
    • /
    • 2015
  • Discharge characteristics of linear microwave plasma were investigated by using fluid simulation of 2D axis-symmetry based on finite elements method. The microwave power was 2.45 GHz TEM mode and transmitted through linear antenna. Resistive power and pressure were considered simulation variables and argon was used for working gas. A decrease of electron density along the quartz tube was observed in low power condition but relatively uniform plasmas were generated in chamber by increasing the resistive power. The electron temperature was highly detected near the surface of quartz tube because the electron was heated only dielectric surface. The power transmission efficiency decreased and characteristics of surface plasma were observed in high electron density condition.

Synthesis of Single-Walled Carbon Nanotubes for Enhancement of Horizontal-Alignment and Density (단일벽 탄소나노튜브의 수평배향도 및 밀도 향상 합성)

  • Kwak, Eun-Hye;Im, Ho-Bin;Jeong, Goo-Hwan
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.6
    • /
    • pp.347-353
    • /
    • 2014
  • We present a synthesis of single-walled carbon nanotubes(SWNTs) for enhancement of parallel-alignment and density using chemical vapor deposition with methane feed gas. As-purchased ST-cut quartz substrates were heat-treated and line-patterned by electron-beam lithography in order to grow SWNTs with parallel alignment. We investigated the effects of various synthesis parameters such as catalyst oxidation, reduction, and synthesis conditions in order to enhance both tube density and degree of parallel alignment. The condition of $1{\AA}$ of Fe catalyst film, atmospheric oxidation at $750^{\circ}C$ for 10 min, reduction under 400 Torr for 5 min, and growth at $865^{\circ}C$ under 300 Torr yields $33tubes/10{\mu}m$, which is the highest tube density with parallel alignment. Based on the results of atomic force microscope and Raman spectroscopy, it was found that SWNTs have diameter range of 0.8-2.0 nm. We believe that the present work would contribute to the development of SWNTs-based flexible functional devices.

Visualization of Vortex Tube near Submerged Nozzle in Simulator of Solid Rocket Motor (고체로켓 모사장치 내삽노즐 주위의 와류튜브 가시화)

  • Kim, Dohun;Shin, Bongki;Son, Min;Koo, Jaye;Kang, Moonjung;Chang, Hongbeen
    • Journal of the Korean Society of Visualization
    • /
    • v.11 no.2
    • /
    • pp.34-40
    • /
    • 2013
  • A flow visualization near submerged nozzle of solid rocket motor was conducted by experiments. A numerical simulation was also performed to reveal detailed phenomena. Radial cold flow simulating hot gas was introduced by a porous grain model which was manufactured by perforated steel plates. The grain model was mounted in high-pressure chamber which has quartz glass at the top of the grain model. From the high-speed images, a rotating vortex was observed and the two type of counter-rotating momentums were generated in numerical results. The rotating momentum was generated at the fin-slot grain because of unbalance between high-velocity flow from slots and low-velocity flow from fin-bases. As a result, roll torques can be produced by the rotating vortex tube.

Construction of CVD by using RF Helicon Plasma (RF 헬리콘 플라즈마를 이용한 회학기상 증착기의 제작)

  • 신재균;현준원;박상규
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.8
    • /
    • pp.607-612
    • /
    • 1998
  • RF HPCVD(Helicon Plasma Chemical Vapor Deposition) has been successfully constructed for diamond thin films. The system consists of plasma generation tube, deposition chamber, pumping lines for gas system. A mixture of $CH_4 and H_2$is used for reaction. Two thermocouples, a quartz tube surrounded by a RF antenna and a magnet, and a high temperature heater were set up in the deposition chamber. The process for the thin film diamond deposition has been carried put in a high vacuum system at a substrate temperature of $800^{\circ}C$, and pressure of 5 mtorr. It is also demonstrated. that the RF HPCVD system has advantages for controlling deposition parameters easily.

  • PDF

Catalytic growth of single wall carbon nanotubes by laser vaporization and its purification and The carbon nanotube growth on the Si substrate by CVD method

  • Lee, Sung won;Jung in Sohn;Lee, Seonghoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.213-213
    • /
    • 2000
  • Direct laser vaporization of transition-metal(Co, Ni)/graphite composite pellet produced single wall carbon naotubes(SWNT) in the condensing vapor in a heated flow cylinder-type tube furnace, Transition metal/graphite composite pellet target was made by mixing graphite, Co, and Ni in 98:1:1 atomic weight ratios, pressing the mixed powder, and curing it. The target was placed in a tube furnace maintained at 1200$^{\circ}C$ and Ar inert collision gas continuously flowed into the tube. The 2nd harmonic, 532nm wavelength light from Nd-YAG laser was used to vaporize the tube. The carbon nanotubes produced by the laser vaporization were accumulated on quartz tube wall. The raw carbon nanotube materials were purified with surfactants(Triton X-100) in a ultrasonicator. These carbon nanotubes were analyzed using SEM, XRD, and Raman spectroscopic method. The carbon nanotube growth on the Ni-patterned Si substrate was investigated by the CVD process. Transition-metal, Ni and CH4 gas were used as a catalyst and a reactant gas, respectively. The structure and the phonon frequencies of the carbon nanotubes formed on the patterned Si substrate were measured by SEM and Raman spectrometer.

  • PDF

Development and Performance Testing of a Time-resolved OSL Measurement System

  • Hong, Duk-Geun;Kim, Myung-Jin
    • Journal of Radiation Protection and Research
    • /
    • v.42 no.1
    • /
    • pp.69-76
    • /
    • 2017
  • Background: Time-resolved optically stimulated luminescence (TR-OSL) is a very useful method for calculating the lifetimes of crystalline quartz and feldspar. Materials and Methods: A compact TR-OSL system was developed, comprising a heater assembly manufactured using Kanthal wire, 2 powerful blue light-emitting diodes (LED, LXHL-PB02) for optical stimulation equipped with VIS liquid light guides, and a photomultiplier tube combined with an optical filter for luminescence detection. A pulse generated from the data acquisition board (NI PCI 6250) was used to initiate on/off signals in LED and TR-OSL measurements. Results and Discussion: The TR-OSL and background signals measured using this TR-OSL system using quartz samples were very similar to those reported in a previous study. Additionally, the lifetimes of the build-up and TR-OSL signals were calculated as $27.4{\pm}2.2{\mu}s$ and $30.3{\pm}0.6{\mu}s$, respectively, in good agreement with the findings of a previous study. Conclusion: It was concluded that the developed TR-OSL system was very reliable for TR-OSL signal measurements and lifetime calculations.

Role of Metal Catalyst and Substrate Site for the Growth of Carbon Nanomaterials

  • Manocha, L.M.;Valand, Jignesh;Manocha, S.
    • Carbon letters
    • /
    • v.6 no.2
    • /
    • pp.79-85
    • /
    • 2005
  • The work reported in this paper relates to preparation and characterization of carbon nanomaterials by CVD method on different substrates by decomposition of certain hydrocarbons at 550-$800^{\circ}C$ using a horizontal quartz tube reactor. Monometallic and bimetallic catalyst system of iron and nickel were used for the preparation of different carbon nanomaterials. The influence of various parameters such as substrate/catalyst preparation parameters, the nature of substrate, catalyst concentration, reaction time and temperature on the growth, yield and alignment of carbon nanotubes has been studied. The characterization of carbon nanomaterials has been carried out using SEM, TEM and TGA. The carbon nanomaterials developed were vertically aligned on a large area of flat quartz substrate.

  • PDF