• Title/Summary/Keyword: quartz sand

Search Result 112, Processing Time 0.019 seconds

Geosites, Geoheritages and Geotrails of the Hwaseong Geopark, the Candidate for Korean National Geopark (화성 국가지질공원 후보지의 지질명소, 지질유산 그리고 지오트레일)

  • Cho, Hyeongseong;Shin, Seungwon;Kang, Hee-Cheol;Lim, Hyoun Soo;Chae, Yong-Un;Park, Jeong-Woong;Kim, Jong-Sun;Kim, Hyeong Soo
    • The Journal of the Petrological Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.195-215
    • /
    • 2019
  • Geopark is a new system for development of the local economy through conservation, education, and tourism that is an area of scientific importance for the earth sciences and that has outstanding scenic values. The Hwaseong Geopark, the candidate for Korean National Geopark is composed of 10 geosites: Gojeongri dinosaur egg fossils, Ueumdo, Eoseom, Ddakseom, Goryeom, Jebudo, Baengmiri Coast, Gungpyeonhang, Ippado and Gukwado geosites. In this study, geosites, geoheritages, and geotrails of the Hwaseong Geopark were described in detail, and the value and significane as a geopark were also discussed. The geology of the Hwaseong Geopark area belonging to the Gyeonggi Massif consists of the Precambrian metamorphic and meta-sedimentary rocks, Paleozoic sedimentary and metamorphic rocks, Mesozoic igneous and sedimentary rocks, and Quaternary deposits, indicating high geodiversity. The Gojeongri Dinosaur Egg Fossils geosite, designated as a natural monument, has a geotrail including dinosaur egg nest fossils, burrows, tafoni, fault and drag fold, cross-bedding. Furthermore, a variety of infrastructures such as eco-trail deck, visitor center are well-established in the geosite. In the Ueumdo geosite, there are various metamorphic rocks (gneiss, schist, and phyllite) and geological structures (fold, fault, joint, dike, and vein), thus it has a high educational value. The Eoseom geosite has high academic value because of the orbicular texture found in metamorphic rocks. Also, various volcanic and sedimentary rocks belonging to the Cretaceous Tando Basin can be observed in the Ddakseom and Goryeom geosites. In the Jebudo, Baengmiri Coast, and Gungpyeonghang geosites, a variety of coastal landforms (tidal flat, seastacks, sand and gravel beach, and coastal dunes), metamorphic rocks and geological structures, such as clastic dikes and quartz veins can be observed, and they also provide various programs including mudflat experience to visitors. Ippado and Gukwado geosites have typical large-scale fold structures, and unique coastal erosional features and various Paleozoic schists can be observed. The Hwaseong Geopark consists of outstanding geosites with high geodiversity and academic values, and it also has geotrails that combine geology, geomorphology, landscape and ecology with infrastructures and various education and experience programs. Therefore, the Hwaseong Geopark is expected to serve as a great National Geopark representing the western Gyeonggi Province, Korea.

Mineralogy and Biogeochemistry of Intertidal Flat Sediment, Muan, Chonnam, Korea (전남 무안 갯벌 퇴적물에 관한 광물학적 및 생지화학적 연구)

  • Park, Byung-No;Lee, Je-Hyun;Oh, Jong-Min;Lee, Seuug-Hee;Han, Ji-Hee;Kim, Yu-Mi;Seo, Hyun-Hee;Roh, Yul
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.1 s.51
    • /
    • pp.47-60
    • /
    • 2007
  • While sedimentological researches on Western coastal tidal flats of Korea have been much pelformed previously, mineralogical and biogeochemical studies are beginning to be studied. The objectives of this study were to investigate mineralogical characteritics of the inter-tidal flat sediments and to explore phase transformation of iron(oxyhydr)oxides and biomineralization by metal-reducing bacteria enriched from the inter-tidal flat sediments from Muan, Jeollanam-do, Korea. Inter-tidal flat sediment samples were collected in Chungkye-myun and Haeje-myun, Muan-gun, Jeollanam-do. Particle size analyses were performed using the pipette method and sedimentation method. The separates including sand, silt and clay fractions were examined by scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis, transmission electron microscopy (TEM), and X-ray diffiaction (XRD). After enriching the metal-.educing bacteria from the into,-tidal flat sediments, the bacteria were used to study phase transformation of the synthesized iron (oxyhydr)oxides and iron biomineralization using lactate or glucose as the electron donors and Fe(III)-containing iron oxides as the electron accepters. Mineralogical studies showed that the sediments of tidal flats in Chung]rye-myun and Haeje-myun consist of quartz, plagioclase, microcline, biotite, kaolinite and illite. Biogeochemical researches showed that the metal-reducing bacteria enriched from the inter-tidal flat sediments reduced reddish brown akaganeite and mineralized nanometer-sized black magnetite. The bacteria also reduced the reddish brown ferrihydrite into black amorphous phases and reduced the yellowish goethite into greenish with formation of nm-sized phases. These results indicate that microbial Fe(III) reduction may play one of important roles in iron and carbon biogeochemistry as well as iron biomineralization in subsurface environments.