• Title/Summary/Keyword: quartz content

Search Result 272, Processing Time 0.023 seconds

Geomechanical properties of synthesised clayey rocks in process of high-pressure compression and consolidation

  • Liu, Taogen;Li, Ling;Liu, Zaobao;Xie, Shouyi;Shao, Jianfu
    • Geomechanics and Engineering
    • /
    • v.20 no.6
    • /
    • pp.537-546
    • /
    • 2020
  • Oil and natural gas reserves have been recognised abundantly in clayey rich rock formations in deep costal reservoirs. It is necessary to understand the sedimentary history of those reservoir rocks to well explore these natural resources. This work designs a group of laboratory experiments to mimic the physical process of the sedimentary clay-rich rock formation. It presents characterisation results of the physical properties of the artificial clayey rocks synthesized from illite clay, quartz sand and brine water by high-pressure consolidation tests. Special focus is given on the effects of illite clay content and high-stress consolidation on the physical properties. Multi-step loaded consolidation experiments were carried out with stress up to 35 MPa on mixtures constituting of the illite clay, quartz sand and brine water with five initial illite clay contents (w=85%, 70%, 55%, 40% and 25%). Compressibility and void ratio were characterised throughout the physical compaction process of the mixtures constituting of five illite clay contents and their water permeability was measured as well. Results show that the applied stress induces a great reduction of clayey rock void ratio. Illite clay contents has a significant influence on the compressibility, void ratio and the permeability of the physically synthesized clayey rocks. There is a critical illite clay content w=70% that induces the minimum void ratio in the physically synthesised clayey rocks. The SEM study indicates, in the high-pressure synthesised clayey rocks with high illite clay contents, the illite clay minerals are located in layers and serve as the material matrix, and the quartz minerals fill in the inter-mineral pores or are embedded in the illite clay matrix. The arrangements of the minerals in microscale originate the structural anisotropy of the high-pressure synthesised clayey rock. The test findings can give an intuitive physical understanding of the deep-buried clayey rock basins in energy reservoirs.

Beneficiation of Low Grade Sericite Using Attrition Scrubbing and Sedimentation (해쇄 및 침강분리에 의한 저품위 견운모의 품위향상 특성)

  • Chae, Sungki;Kim, Hyunsoo;Kim, Sangbae;Kim, Wantae
    • Journal of the Mineralogical Society of Korea
    • /
    • v.30 no.4
    • /
    • pp.137-147
    • /
    • 2017
  • Sericite is a clay mineral that has a wide applications in the industry, depending on its purity. To maintain sericite's purity as high as possible it is necessary to remove its gangue minerals or control their contents prior to use for high value-added products and applications. In this study, the wet beneficiation of sericite by applying selective grinding and sedimentation techniques, were investigated. The ore mineral was composed mainly of sericite, quartz and calcite. Analysis showed that the content of sericite increased along with the particle size decrease, but the contents of impurity minerals as quartz and calcite were tended to decrease relatively with particle size decrease. The results of liberation tests using an attrition scrubber showed that the increase in residence time and slurry density have increased the generation of fine particles in -325 mesh size range. It was observed, however, that the contents of impurities such as quartz and calcite in such fine particles also increased during prolonged scrubbing. In the dispersed form without breaking, the yield of the recovered concentrate was 15.4 wt% and the $K_2O$ content was 9.84 wt%, after the dispersed slurry was allowed to settle for 20 minutes. On the other hand, the concentrate yield was increased to 23.4 wt% after 10 minute attrition scrubbing and 40 minute sedimentation, while its $K_2O$ content was decreased to 9.71 wt%. Most of final products were observed as platelet-shaped particles containing Si, Al and K which are main component of sericite.

Variation of Gold Content in Rocks and Minerals from the Seongsan and Ogmaesan Clay Deposits in the Haenam Area, Korea (해남지역 성산 및 옥매산 점토광산에서와 금함량 변화)

  • Yoon, Chung-Han
    • Economic and Environmental Geology
    • /
    • v.28 no.6
    • /
    • pp.571-577
    • /
    • 1995
  • Several acid-sulfate clay deposits associated with silicic magmas occur in the Haenam area of the southwestern part of Korea. Geology of the studied area consists of tuffs, granitic rocks, quartz porphyry, rhyolite, andesite and sedimentary rocks. The granitic rocks and quartz porphyry intruded tuffs and sedimentary rocks. The rhyolite and tuffs around the mines have undergone hydrothermally weak or strong alteration. Gold contents with major and trace elements have been determined for a total of sixty-seven specimens of fresh igneous rocks, wall rocks and minerals such as dickite and alunite by graphite furnace atomic absorption spectrometer and inductively coupled plasma. Gold is enriched in the alunite vein and the silicified zone, but is depleted in dickites and hydrothermally altered rocks with dickite of the Seongsan deposit. Gold is especially concentrated near the faults or conjunction area of two faults. High content of gold is shown in the mineral assemblages of alunitequartz- pyrite in the alunite vein and silicic zone of the Seongsan deposit compared with that of minerals and rocks from another deposits distributed in the studied area. Gold content in tuffs and dickites with pyrite is generally low. Gold content in silicified tuff tends to show positive correlations with content of As, Hg and Sb. Variation trends of Cd, Hg and Sb are similar to those of gold content. From the result of gold content variations, gold may be transported and concentrated by mineralizing solutions ascending along the cracks like fault. Therefore, it is important to survey alunite vein and silicified zone at the conjunction of faults, and to analyze pathfinder elements such as As, Hg and Sb for geological and geochemical exploration of gold in the studied deposits.

  • PDF

Occurrence and Chemical Composition of White Mica and Ankerite from Laminated Quartz Vein of Samgwang Au-Ag Deposit, Republic of Korea (삼광 금-은 광상의 엽리상 석영맥에서 산출되는 백색운모와 철백운석의 산상 및 화학조성)

  • Yoo, Bong Chul
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.1
    • /
    • pp.53-64
    • /
    • 2020
  • The Samgwang deposit has been one of the largest deposits in Korea. The deposit consists of series of host rocks including Precambrian metasedimentary rocks and Jurassic Baegunsa formation, which unconformably overlies the Precambrian metasedimentary rocks. The deposit consists of eight lens-shaped quartz veins which filled fractures along fault zones in Precambrian metasedimentary rock, which feature suggest that it is an orogenic-type deposit. Laminated quartz veins are common in the deposit which contain minerals including quartz, ankerite, white mica, chlorite, apatite, rutile, arsenopyrite, sphalerite, chalcopyrite and galena. The structural formulars of white micas from laminated quartz vein and wallrock alteration are determined to be (K1.02-0.82Na0.02-0.00Ca0.00)(Al1.73-1.58Mg0.26-0.16Fe0.23-0.10Mn0.00Ti0.03-0.01Cr0.01-0.00)(Si3.35-3.22Al0.79-0.65)O10(OH)2 and (K0.75-0.67Na0.01Ca0.00) (Al1.78-1.74Mg0.16-0.15Fe0.15-0.13Mn0.00Ti0.04-0.02Cr0.01-0.00)(Si3.33-3.26Al0.74-0.67)O10(OH)2, respectively. It suggest that white mica from laminated quartz vein has higher interlayer cation (K+Na+Ca) and Fe+Mg+Mn+Ti content in octahedral site compared to the white mica from the wallrock alteration. Compositional variations in white mica from laminated quartz vein can be caused by phengitic or Tschermark substitution ((Al3+)VI+(Al3+)IV <-> (Fe2+ or Mg2+)VI)+(Si4+)IV) and (Fe3+)VI <-> (Al3+)VI substitution. Ankerite from laminated quartz vein has compositional variations of FeO and MgO contents along crystal growth direction. The geochemical and textural features suggest that laminated quartz vein from the Samgwang gold-silver deposit was formed during ductile shear stage, which is an important main gold-silver ore-forming event in orogeinc deposit.

Quantitative X-ray Diffraction Analysis of the Yellow Sea Surface Sediments; 2nd Yellow Sea Cruise Samples in 2001 (황해 표층 퇴적물의 X선 광물정량분석; 2001년 황해 2차 탐사 시료)

  • Moon, Dong-Hyuk;Kim, Soon-Oh;Yi, Hi-Il;Shin, Dong-Hyeok;Shin, Kyung-Hoon;Cho, Hyen-Goo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.203-212
    • /
    • 2007
  • Mineral compositions of 89 Yellow Sea surface sediments collected at the second cruise in 2001, were determined using the high resolution X-ray diffractometer and Siroquant v.3.0 program. Yellow Sea surface sediments are composed of major minerals (quartz 57.8%, plagioclase 16.0% and alkali feldspar 10.0%), clay minerals, and calcite. Illite (8.7%) is the most abundant clay mineral, chlorite (2.6%) is the second, and kaolinite (0.6%) is few. however smectite is not detected. Quartz content is very high around the margin of the Yellow Sea, however is very low along the northwest to southeast direction extending from southeast of Sandong Peninsula to southwest of Jeju Island. It has similar distribution pattern with that of coarse sediment (sand). The coarse sediment, is mainly consisted of quartz, may be much supplied from the eastern part and southwestern part of the Yellow Sea. Illite distribution pattern is opposite to that of quartz. It is similar to those of clay and mud particles, therefore it can be suggested that fine sediment may be largely supplied from the northwestern part of the Yellow Sea. It is necessary to continue this kind of investigation, because it is difficult to interpret the sediment provenance of the Yellow Sea only from the result of this study.

Sedimentary Petrology and Paleo-oceanography of the Hoedongri Formation, Jeongseon,-Kun, Kangweon-Do, Korea (江原道 旌善郡 檜洞理一帶의 石灰巖層(檜洞理層)에 대한 古海洋學的 (堆積巖石學的) 硏究)

  • 박용안;장진호
    • 한국해양학회지
    • /
    • v.20 no.2
    • /
    • pp.40-48
    • /
    • 1985
  • The depositional conditions and paleo-oceanography of the Hoedongri Formation(Silurian) distributed in the Hoedongri, Jeongseon-Kun, Kangweon-Do, Korea were investigated. The major rock types and facies of the Hoedongri Formation consist of mudstone and wackestone facies in which the content of insoluble residues is relatively high (average. 17%). The sedimentary structures observed in the Hoedongri Formation being helpful to the interpretation of depositional conditions are; crypt-algalaminates, bird's eye structures, evaporite pseudomorphs, dolomite mottle structures, detrital quartz pockets and cross bedding. Based on the rock types, facies and sedimentary structures of the Hoedongri Formation, it seems that the Hoedongri Formation might be deposited in a saline supratidal and intertidal zone.

Content of Heavy Metals in Coal Fly Ash from the Samcheonpo and the Seocheon Power Plant (삼천포와 서천 화력발전소에서 발생하는 석탄회중의 중금속 함량에 관한 연구)

  • Yoon, Chung-Han;Oh, Keun-Chang;Kim, Yong-Woong;Shin, Bang-Sup
    • Economic and Environmental Geology
    • /
    • v.28 no.2
    • /
    • pp.147-154
    • /
    • 1995
  • Coal fly ashes collected from the Samcheonpo and the Seocheon Power Plants were analyzed for major and minor components and heavy metals such as As, Cd, Co, Cr, Cu, Ga, Hg, Mo, Ni, Pb, Sb, V and Zn in order to suggest basic data to apply coal fly ash as fertilizer or soil ameliorator. The specific gravity of the samples was less than 2.0, and amounts of organic matter range from 5.0% to 12.3%. The identified minerals by XRD were mainly quartz, mullite and pyrite in anthracite coal, and mainly quartz and mullite in bituminous coal. Generally, the contents of heavy metal elements analyzed were lower less than those of soil, though higher in some samples. Element couples of some elements( e.g., As-Mo, Zn ; Mo-As, Sb, V, Zn ; Sb-Zn ) show positive correlations with each other, but the high correlations of toxic elements such as As, Pb, Cd and Hg indicate to give attention to apply coal fly ash as fertilizer or soil ameliorator.

  • PDF

Occurrence and Chemical Composition of Chlorite and White Mica from Drilling Core (No. 04-1) at Gubong Au-Ag Deposit Area, Republic of Korea (구봉 금-은 광상일대 시추코아(04-1)에서 산출되는 녹니석과 백색운모의 산상 및 화학조성)

  • Bong Chul Yoo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.4
    • /
    • pp.273-288
    • /
    • 2023
  • The Gubong Au-Ag deposit, which has been one of the largest deposits (Unsan, Daeyudong, Kwangyang) in Korea, consists of eight lens-shaped quartz veins (a mix of orogenic-type and intrusion-related types) that filled fractures along fault zones within Precambrian metasedimentary rock. Korea Mining Promotion Corporation found a quartz vein (referred to as the No. 6 vein with a grade of 27.9 g/t Au and a width of 0.9 m) at a depth of -728 ML by drilling (No. 90-12) conducted in 1989. Korea Mining Promotion Corporation conducted drilling (No. 04-1) in 2004 to investigate the redevelopment's possibility of the No. 6 vein. The author studied the occurrence and chemical composition of chlorite and white mica using wallrock, wallrock alteration and quartz vein samples collected from the No. 04-1 drilling core in 2004. The alteration of studied samples occurs chloritization, sericitization, silicification and pyritization. Chlorite and white mica from mineralized zone at a depth of -275 ML occur with quartz, K-feldspar, calcite, rutile and pyrite in wallrock alteration zone and quartz vein. Chlorite and white mica from ore vein (No. 6 vein) at a depth of -779 ML occur with quartz, calcite, apatite, zircon, rutile, ilmenite, pyrrhotite and pyrite in wallrock alteration zone and quartz vein. Chlorite from a depth of -779 ML has a higher content of Al and Mg elements and a lower content of Si and Fe elements than chlorite from a depth of -275 ML. Also, Chlorites from a depth of -275 ML and -779 ML have higher content of Si element than theoretical chlorite. Compositional variation in chlorite from a depth of -275 ML was mainly caused by phengitic or Tschermark substitution [Al3+,VI + Al3+,IV <-> (Fe2+ or Mg2+)VI + (Si4+)IV], but compositional variation from a depth of -779 ML was mainly caused by octahedral Fe2+ <-> Mg2+ (Mn2+) substitution. The interlayer cation site occupancy (K+Na+Ca+Ba+Sr = 0.76~0.82 apfu, 0.72~0.91 apfu) of white mica from a depth of -275 ML and -779 ML have lower contents than theoretical dioctahedral micas, but octahedral site occupancy (Fe+Mg+Mn+Ti+Cr+V+Ni = 2.09~2.13 apfu, 2.06~2.14 apfu) have higher contents than theoretical dioctahedral micas. Compositional variation in white mica from a depth of -275 ML was caused by phengitic or Tschermark substitution [(Al3+)VI + (Al3+)IV <-> (Fe2+ or Mg2+)VI + (Si4+)IV], illitic substitution and direct (Fe3+)VI <-> (Al3+)VI substitution. But, compositional variation in white mica from a depth of -779 ML was caused by phengitic or Tschermark substitution [(Al3+)VI + (Al3+)IV <-> (Fe2+ or Mg2+)VI + (Si4+)IV] and direct (Fe3+)VI <-> (Al3+)VI substitution.

Effect of oxalic acid on the iron content of pottery stone (도석의 탈철에 관한 Oxalic acid의 영향에 관한 연구)

  • Kim Kyung-Nam;Park Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.6
    • /
    • pp.257-261
    • /
    • 2004
  • The pottery stones from the Taebek area consist of abundant quartz with kaolinite. In this study, the characteristics of pottery stones were examined by XRD (X-ray diffractometer), XRF (X-ray fluorescence spectrometer), TG-DTA and SEM (Scanning Electron Microscope). The chemical compositions of the raw ore showed 71.75 wt%$SiO_2$, 22.10 wt%$Al_2O_3$, 1.86 wt%CaO, 2.97 wt%$K_2O$, 0.62 wt%$Fe_2O_3$. When pottery stone of 3 mm size was leached at $80^{\circ}C$ with 10 % oxalic acid, the content of $Fe_2O_3$ was reduced from 0.62 wt% to 0.24 wt% and the whiteness was enhanced. Grinding of pottery stone was conducted by a planetary ball mill using media of zirconia, the average particle size was 2~5 $\mu\textrm{m}$.

Evaporation and stabilization of the heavy metals in EAF dust-clay bodies (EAF 더스트-점토계 소지의 중금속 휘발 및 안정화)

  • Kim, J.H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.6
    • /
    • pp.217-221
    • /
    • 2005
  • The evaporation amounts of volatile Cd, Pb and Zn were characterized by measuring their total concentrations in the EAF dust-clay bodies with various mixing ratio and heat treatment temperature. TCLP test was conducted for evaluating the chemical stabilities of the heavy metal elements. Evaporation amounts and leaching concentrations of heavy metal components were strongly dependent on the mixing ratio and heat treatment temperature. The evaporation of the heavy metal components in EAF dust was effectively suppressed by increasing the clay content. The leaching concentrations of heavy metal components were decreased with increasing clay content and temperature. 20 wt% EAF dust-80 wt% clay sample shows nearly zero evaporation and leaching concentrations of heavy metal components. XRD analysis showed that peak intensities of major crystalline phases such as franklinite and quartz were decreased with increasing the heat treatment temperature which means that the stabilization mechanism of the heavy metals was related with the vitrification process of the $SiO_2$ in the clay.