• Title/Summary/Keyword: quantum theory

Search Result 244, Processing Time 0.023 seconds

Biological Distribution by Water Temperature and Refocus on the Theory of Critical Environmental Variation Quantum (수온환경변화에 따른 생물분포와 어업피해결정을 위한 임계환경변화량이론의 재조명)

  • Kang, Young-Joo;Kim, Ki-Soo
    • The Journal of Fisheries Business Administration
    • /
    • v.45 no.1
    • /
    • pp.1-16
    • /
    • 2014
  • The study attempts to show that the theory of critical environmental variation quantum(CEVQ) has a sound logical basis and empirical support. It is well known that the theory of critical environmental variation quantum is derived from the theory of biological probability distibution function and the central limit theorem(CLT) in statistics. The study uses the case study of fisheries damages compensation caused br the public marine construction undertaken in the area do Anjeong Bay in the city of Tongyeong for empirical test of theory of CEVQ. The results shows that the CEVQ theory perfoms a good job in measuring quantatively fjsheries damages caused by outflow of cold water due to the operation of LNG company since 2002. Therefore the study proves that the CEVQ theory is a good theory having internal consistency and empirical applicability.

Teleportation into Quantum Statistics

  • Gill, Richard
    • Journal of the Korean Statistical Society
    • /
    • v.30 no.2
    • /
    • pp.291-325
    • /
    • 2001
  • The paper is a tutorial introduction to quantum information theory, developing the basic model and emphasizing the role of statistics and probability.

  • PDF

Modal Transmission-Line Theory of Quantum-Well Couplers based on Schrodinger Equation (Schrodinger 방정식에 기초한 Qilantuin-Well 결합기의 모드전송선로 해석법)

  • 호광춘;윤인국;김영권
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.917-920
    • /
    • 1999
  • Modal transmission-line theory is described for guided electron waves in quantum-well structures. To demonstrate the validity and usefulness of this approach, we evaluate the propagation characteristics and the coupling properties of electron guiding couplers consisting of double quantum-wells (DQWs).

  • PDF

Quantum Transition Properties of Quasi-Two Dimensional Si System in Electron Deformation Potential Phonon Interacting (전자 포텐셜 변형과 포논 상호작용에 의한 준 이차원 Si 구조의 전도 현상 해석)

  • Lee, Su-Ho;Kim, Young-Mun;Kim, Hai-Jai;Joo, Seok-Min
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.3
    • /
    • pp.129-134
    • /
    • 2017
  • We investigated theoretically the quantum optical transition properties of Si, in quasi 2-Dimensinal Landau splitting system, based on quantum transport theory. We apply the quantum transport theory (QTR) to the system in the confinement of electrons by square well confinement potential under linearly polarized oscillating field. We use the projected Liouville equation method with Equilibrium Average Projection Scheme (EAPS). In order to analyze the quantum transition, we compare the temperature and the magnetic field dependencies of the QTLW and the QTLS on four transition processes, namely, the intra-leval transition process, the inter-leval transition process, the phonon emission transition process and the phonon absorption transition process.

Quantum Jump Approach to Stimulated Absorption and Emission

  • Lee, Chang Jae
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.8
    • /
    • pp.1186-1188
    • /
    • 2006
  • In this paper a new theory is presented to treat the problem of stimulated absorption and emission of photons between energy levels from the standpoint of discrete quantum jumps. In order to implement the theory a scheme to avoid the quantum Zeno effect is proposed. Numerical simulations are performed to demonstrate that this approach does not contradict the principles of the standard wave mechanics. It is shown that with this approach one can obtain photon observation statistics as well.

The Magnetic Field Dependence Properties of Quasi Two Dimensional Electron-piezoelectric Potential Interacting System in GaN and ZnO

  • Lee, S.H.;Sug, J.Y.;Lee, J.H.;Lee, J.T.
    • Journal of Magnetics
    • /
    • v.16 no.4
    • /
    • pp.408-412
    • /
    • 2011
  • We investigated theoretically the magnetic field dependence of the quantum optical transition of qusi 2-Dimensional Landau splitting system, in GaN and ZnO. We apply the Quantum Transport theory (QTR) to the system in the confinement of electrons by square well confinement potential. We use the projected Liouville equation method with Equilibrium Average Projection Scheme (EAPS). Through the analysis of this work, we found the increasing properties of the optical Quantum Transition Line Shapes(QTLSs) which show the absorption power and the Quantum Transition Line Widths(QTLWs) with the magnetic-field in GaN and ZnO. We also found that QTLW, ${\gamma}(B)_{total}$ of GaN < ${\gamma}(B)_{total}$ of ZnO in the magnetic field region B < 25 Tesla.

The magnetic properties of optical Quantum transitions of electron-piezoelectric potential interacting systems in CdS and ZnO

  • Lee, Su Ho
    • Journal of IKEEE
    • /
    • v.22 no.1
    • /
    • pp.61-67
    • /
    • 2018
  • We investigated theoretically the magnetic field dependence of the quantum optical transition of qusi 2-Dimensional Landau splitting system, in CdS and ZnO. In this study, we investigate electron confinement by square well confinement potential in magnetic field system using quantum transport theory(QTR). In this study, theoretical formulas for numerical analysis are derived using Liouville equation method and Equilibrium Average Projection Scheme (EAPS). In this study, the absorption power, P (B), and the Quantum Transition Line Widths (QTLWS) of the magnetic field in CdS and ZnO can be deduced from the numerical analysis of the theoretical equations, and the optical quantum transition line shape (QTLS) is found to increase. We also found that QTLW, ${\gamma}(B)_{total}$ of CdS < ${\gamma}(B)_{total}$ of ZnO in the magnetic field region B<25 Tesla.

Quantum theory of multiwave mixing with a local field correction

  • An, Sung-Hyuck;Rhee, Bum-Ku
    • Journal of the Optical Society of Korea
    • /
    • v.1 no.2
    • /
    • pp.94-99
    • /
    • 1997
  • In this paper, we calculate the four coefficients for the quantum theory of multiwave mixing including a local-field correction resulting from dipole-dipole interactions. We make contact with the semiclassical calculations of probe absorption and four-wave-mixing coupling coefficients, and illustrate the effects of local field corrections on resonance-fluorescence and coupled-mode-fluorescence spectra. The method uses the hybrid quantum-Langevin-equation master-equation approach of An and Sargent.

On the Geometry of Charged Rotating Black Holes

  • Yun, Jong Gug
    • Journal for History of Mathematics
    • /
    • v.35 no.2
    • /
    • pp.59-70
    • /
    • 2022
  • In this paper, we review some aspects of geometry for charged rotating black holes which are formed from the gravitational collapse of a massive spinning star with electric charge. We also introduce the computation of entropy for black holes from loop quantum gravity which is a quantum theory of gravity based on Einstein's theory of general relativity.

RECENT PROGRESS IN STRING INFLATIONARY COSMOLOGY

  • REY Soo-JONG
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.11-14
    • /
    • 1996
  • Super-inflation driven by dilaton/moduli kinetic energy is naturally realized in compactified string theory. Discussed are selected topics of recent development in string inflationary cosmology: kinematics of super-inflation, graceful exit triggered by quantum back-reaction, and classical and quantum power spectra of density and metric perturbations.

  • PDF