• Title/Summary/Keyword: quantum phase

Search Result 190, Processing Time 0.034 seconds

Multichannel Quantum Defect Theory Analysis of Overlapping Resonance Structures in Lu-Fano Plots of Rare Gas Spectra

  • Lee, Chun-Woo;Kong, Ja-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.8
    • /
    • pp.1783-1792
    • /
    • 2009
  • Although overlapping resonances have been studied extensively in conventional resonance theories, there have not been many studies on them in multichannel quantum defect theories (MQDT). In MQDT, overlapping resonances occur between the channels instead of states, which pose far greater difficulty. Their systematic treatment was obtained for cases involving degenerate closed channels by applying our previous theory, which decouples background scattering from the resonance scattering in the MQDT formulation. The use of mathematical theory on con-diagonalization and con-similarity was essential for handling the non-Hermitian symmetric complex matrix. Overlapping resonances in rare gas spectra of Ar, Kr and Xe were analyzed using this theory and the results were compared with the ones of the previous alternative parameterizations of MQDT which make the open-open part $K^{oo}$ and closed-closed part $K^{cc}$ of reactance submatrices zero. The comparison revealed that separation of background and resonance scatterings achieved in our formulation in a systematic way was not achieved in the representation of $K^{oo}\;=\;0\;and\;K^{cc}$ = 0 when overlapping resonances are present.

Periodically Poled BaTiO3: An Excellent Crystal for Terahertz Wave Generation by Cascaded Difference-frequency Generation

  • Li, Zhongyang;Yuan, Bin;Wang, Silei;Wang, Mengtao;Bing, Pibin
    • Current Optics and Photonics
    • /
    • v.2 no.2
    • /
    • pp.179-184
    • /
    • 2018
  • Terahertz (THz) wave generation by periodically poled $BaTiO_3$ (PPBT) with a quasi-phase-matching (QPM) scheme based on cascaded difference-frequency generation (DFG) is theoretically analyzed. The cascaded DFG processes comprise cascaded Stokes and anti-Stokes processes. The calculated results indicate that the cascaded Stokes processes are stronger than the cascaded anti-Stokes processes. Compared to a noncascaded Stokes process, THz intensities from $20^{th}$-order cascaded Stokes processes increase by a factor of 30. THz waves with a maximum intensity of $0.37MW/mm^2$ can be generated by $20^{th}$-order cascaded DFG processes when the optical intensity is $10MW/mm^2$, corresponding to a quantum conversion efficiency of 1033%. The high quantum conversion efficiency of 1033% exceeds the Manley-Rowe limit, which indicates that PPBT is an excellent crystal for THz wave generation via cascaded DFG.

Development and validation of a fast sub-channel code for LWR multi-physics analyses

  • Chaudri, Khurrum Saleem;Kim, Jaeha;Kim, Yonghee
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1218-1230
    • /
    • 2019
  • A sub-channel solver, named ${\underline{S}}teady$ and ${\underline{T}}ransient$ ${\underline{A}}nalyzer$ for ${\underline{R}}eactor$ ${\underline{T}}hermal$ hydraulics (START), has been developed using the homogenous model for two-phase conditions of light water reactors. The code is developed as a fast and accurate TH-solver for coupled and multi-physics calculations. START has been validated against the NUPEC PWR Sub-channel and Bundle Test (PSBT) database. Tests like single-channel quality and void-fraction for steady state, outlet fluid temperature for steady state, rod-bundle quality and void-fraction for both steady state and transient conditions have been analyzed and compared with experimental values. Results reveal a good accuracy of solution for both steady state and transient scenarios. Axially different values for turbulent mixing coefficient are used based on different grid-spacer types. This provides better results as compared to using a single value of turbulent mixing coefficient. Code-to-code evaluation of PSBT results by the START code compares well with other industrial codes. The START code has been parallelized with the OpenMP algorithm and its numerical performance is evaluated with a large whole PWR core. Scaling study of START shows a good parallel performance.

COMPARISON OF DIFFERENT NUMERICAL SCHEMES FOR THE CAHN-HILLIARD EQUATION

  • Lee, Seunggyu;Lee, Chaeyoung;Lee, Hyun Geun;Kim, Junseok
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.17 no.3
    • /
    • pp.197-207
    • /
    • 2013
  • The Cahn-Hilliard equation was proposed as a phenomenological model for describing the process of phase separation of a binary alloy. The equation has been applied to many physical applications such as amorphological instability caused by elastic non-equilibrium, image inpainting, two- and three-phase fluid flow, phase separation, flow visualization and the formation of the quantum dots. To solve the Cahn-Hillard equation, many numerical methods have been proposed such as the explicit Euler's, the implicit Euler's, the Crank-Nicolson, the semi-implicit Euler's, the linearly stabilized splitting and the non-linearly stabilized splitting schemes. In this paper, we investigate each scheme in finite-difference schemes by comparing their performances, especially stability and efficiency. Except the explicit Euler's method, we use the fast solver which is called a multigrid method. Our numerical investigation shows that the linearly stabilized stabilized splitting scheme is not unconditionally gradient stable in time unlike the known result. And the Crank-Nicolson scheme is accurate but unstable in time, whereas the non-linearly stabilized splitting scheme has advantage over other schemes on the time step restriction.

Growth of semi-polar (1-101) InGaN/GaN MQW structures on $8^{\circ}$ off -axis (100) patterned Si substrate by MOVPE ($8^{\circ}$-off (100) Si 기판위의 반극성을 가지는 (1-101) InGaN/GaN 다중양자우물 구조의 MOVPE 성장)

  • Han, Y.H.;Jean, H.S.;Hong, S.H.;Kim, E.J.;Lee, A.R.;Kim, K.H.;Ahn, H.S.;Yang, M.;Tanikawa, T.;Honda, Y.;Yamaguchi, M.;Sawaki, N.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.1
    • /
    • pp.1-5
    • /
    • 2009
  • In this study, we performed growth of InGaN/GaN multi quantum well (MQW) structures on semi-polar (1-10]) GaN facet on 8-degree off oriented stripe patterned (100) Si substratcs by MOVPE. The structural and optical properties of the InGaN/GaN multi quantum well (MQW) structures grown on (1-101) GaN stripe depend on $NH_3$ flow rate, TMI flow rate and growth temperature are characterized by cathodoluminescence (CL) and scanning electron microscopy (SEM). With the decrease of $NH_3$ flow rate, the threading dislocation of (1-101) GaN is considerably reduced. We could control the transition wavelength of InGaN/GaN MQW structures from 391.5 nm to 541.2 nm depend on the growth conditions.

Comparative analysis of two methods of laser induced boron isotopes separation

  • K.A., Lyakhov;Lee, H.J.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.407-408
    • /
    • 2011
  • Natural boron consists of two stable isotopes 10B and 11B with natural abundance of 18.8 atom percent of 10B and 81.2 atom percent of 11B. The thermal neutron absorption cross-section for 10B and 11B are 3837 barn and 0.005 barn respectively. 10B enriched specific compounds are used for control rods and as a reactor coolant additives. In this work 2 methods for boron enrichment were analysed: 1) Gas irradiation in static conditions. Dissociation occurs due to multiphoton absorption by specific isotopes in appropriately tuned laser field. IR shifted laser pulses are usually used in combination with increasing the laser intensity also improves selectivity up to some degree. In order to prevent recombination of dissociated molecules BCl3 is mixed with H2S 2) SILARC method. Advantages of this method: a) Gas cooling is helpful to split and shrink boron isotopes absorption bands. In order to achieve better selectivity BCl3 gas has to be substantially rarefied (~0.01%-5%) in mixture with carrier gas. b) Laser intensity is lower than in the first method. Some preliminary calculations of dissociation and recombination with carrier gas molecules energetics for both methods will be demonstrated Boron separation in SILARC method can be represented as multistage process: 1) Mixture of BCl3 with carrier gas is putted in reservoir 2) Gas overcooling due to expansion through Laval nozzle 3) IR multiphoton absorption by gas irradiated by specifically tuned laser field with subsequent gradual gas condensation in outlet chamber It is planned to develop software which includes these stages. This software will rely on the following available software based on quantum molecular dynamics in external quantized field: 1) WavePacket: Each particle is treated semiclassicaly based on Wigner transform method 2) Turbomole: It is based on local density methods like density of functional methods (DFT) and its improvement- coupled clusters approach (CC) to take into account quantum correlation. These models will be used to extract information concerning kinetic coefficients, and their dependence on applied external field. Information on radiative corrections to equation of state induced by laser field which take into account possible phase transition (or crossover?) can be also revealed. This mixed phase equation of state with quantum corrections will be further used in hydrodynamical simulations. Moreover results of these hydrodynamical simulations can be compared with results of CFD calculations. The first reasonable question to ask before starting the CFD simulations is whether turbulent effects are significant or not, and how to model turbulence? The questions of laser beam parameters and outlet chamber geometry which are most optimal to make all gas volume irradiated is also discussed. Relationship between enrichment factor and stagnation pressure and temperature based on experimental data is also reported.

  • PDF

Analysis of Human Serum Amyloid A-1 Concentrations Using a Lateral Flow Immunoassay with CdSe/ZnS Quantum Dots (Human Serum Amyloid A-1 단백질 농도 분석을 위한 CdSe/ZnS 양자점 기반의 Lateral Flow Immunoassay 방법 개발)

  • Fajri, Aidil;Goh, Eunseo;Lee, Sanghyuk;Lee, Hye Jin
    • Applied Chemistry for Engineering
    • /
    • v.30 no.4
    • /
    • pp.429-434
    • /
    • 2019
  • A lateral flow immunoassay platform utilizing antibody functionalized water soluble CdSe/ZnS semiconductor quantum dots (QDs) was developed for the analysis of human serum amyloid A-1 (hSAA1) in a buffer solution. hSAA1 was chosen as a target protein because it is regarded as a potential biomarker associated with early diagnosis and prognosis in patients of lung cancer. The immunoassay strip on a nitrocellulose membrane was fabricated by spraying two lines composed of a test line with a monoclonal antibody against hSAA1 (10G1) (anti hSAA1) and a control line of anti-chicken IgY. While the CdSe/ZnS QDs synthesized in an organic phase were transferred to a water phase by ligand exchange using carboxylic acid modified alkane thiol. The QDs was then conjugated to monoclonal antibody against hSAA1 (14F8) [anti hSAA1 (14F8)] and used as a fluorescent detection probe. The sequential lateral flow of hSAA1 in different concentration and QDs-anti hSAA1 (14F8) complex allowed to form the surface sandwich complex of anti hSAA1 (10G1)/hSAA1/QD-anti hSAA1 (14F8), which was then analyzed using fluorescence microscope. A 100 nM concentration of hSAA1 protein can be detected by naked eyes under an optimized lateral flow buffer condition with a sensing time of 5 mins.

Effects of Interface Soaking on Strain Modulation in InAs/GaSb Strained-Layer Superlattices (계면 흡착에 의한 InAs/GaSb 초격자의 응력변조 효과)

  • Shin, H.W.;Choe, J.W.;Kim, J.O.;Lee, S.J.;Kim, C.S.;Noh, S.K.
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.1
    • /
    • pp.35-41
    • /
    • 2011
  • In this study, the interface soaking effect in InAs/GaAs strained-layer superlattice (SLS) on crystalline phase modulation has been analyzed by the x-ray diffraction (XRD) curve. The strain variation induced by As and/or Sb soaking was determined by the separation angle between the substrate peak and the 0th-order superlattice satellite peak in the XRD spectra. Contrated that the As/InAs soaking arises minor GaAs-like interfacial layer, the Sb/GaSb soaking induces InSb-like one. The Fourier-transformed curves of the Pendellosung interference oscillation shows that the optimum soaking times of As/InAs and Sb/GaSb are 2 sec and 12 sec, at which the highest crystallineity has, respectively. An anomalous twin-peak phenomenon that a satellite peak splits into two peaks was observed in the SLS structure co-soaked by As and Sb at InAs${\rightarrow}$GaSb interfaces. We suggest that it may be resulted from coexistence of two kinds crystalline phases of InAsSb and GaAsSb due to intermixing of In${\leftrightarrow}$Ga and Sb${\leftrightarrow}$As.

Optical Characteristics of Multi-Stacked InAs/InAlGaAs Quantum Dots (다층 성장한 InAs/InAlGaAs 양자점의 광학적 특성)

  • Oh, Jae-Won;Kwon, Se-Ra;Ryu, Mee-Yi;Jo, Byoung-Gu;Kim, Jin-Soo
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.6
    • /
    • pp.442-448
    • /
    • 2011
  • Self-assembled InAs/InAlGaAs quantum dots (QDs) grown on an InP (001) substrate have been investigated by using photoluminescence (PL) and time-resolved PL measurements. The single layer (QD1) and seven stacks (QD2) of InAs/InAlGaAs QDs grown by the conventional S-K growth mode were used. The PL peak at 10 K was 1,320 nm for both QD1 and QD2. As the temperature increases from 10 to 300 K, the PL peaks for QD1 and QD2 were red-shifted in the amount of 178 and 264 nm, respectively. For QD1, the PL decay increased with increasing emission wavelength from 1,216 to 1,320 nm, reaching a maximum decay time of 1.49 ns at 1,320 nm, and then decreased as the emission wavelength was increased further. However, the PL decay time for QD2 decreased continuously from 1.83 to 1.22 ns as the emission wavelength was increased from 1,130 to 1,600 nm, respectively. These PL and TRPL results for QD2 can be explained by the large variation in the QD size with stacking number caused by the phase separation of InAlGaAs.

Phase diagrams adn stable structures of stranski-krastanov structure mode for III-V ternary quantum dots

  • Nakajima, Kazuo;Ujihara, Toru;Miyashita, Satoru;Sazaki, Gen
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.4
    • /
    • pp.387-395
    • /
    • 1999
  • The strain, surface and interfacial energies of III-V ternary systems were calculated for three kinds of structure modes: the Frank-van der Merwe(FM) mode, the Stanski-Krastanov(SK) mode and the Volmer-Weber(VW) mode. The free energy for each mode was estimated as functions of thickness and composition or lattice misfit. Through comparison of the free energy of each mode, it was found that the thickness-composition phase diagrams of III-V ternary systems can be determined only by considering the balance of the free energy and three kinds of structure modes appear in the phase diagrams. The SK mode appears only when the lattice misfit is large and/or the lattice layer is thick. The most stable structure of the SK mode is a cluster with four lattice layers or minimum thickness on a wetting layer of increasing lattice layers. The VW mode appears when the lattice misfit is large and the lattice layer is thin and only in the INPSb/InP and GaPSb/GaP system which have the largest lattice misfit of III-V ternary systems. The stable region of the SK mode in the GaPSb/GaP and InPSb/InP phase diagrams is largest of all because the composition dependence of the strain energy of these systems is stronger than that of the other systems. The critical number of lattice layers below which two-dimensional(2D) layers precede the three-dimensional(3D) nucleation in the SK mode at x=1.0 depends on the lattice misfit.

  • PDF