• Title/Summary/Keyword: quantum optics

Search Result 231, Processing Time 0.048 seconds

Study on the Effective Focal Volume Change due to Light Intensity Using Fluorescence Correlation Spectroscopy (형광상관분광법을 이용한 광세기에 따른 유효 초점 부피 변화에 대한 연구)

  • Jeong, Chanbae;Lee, Jaeran;Kim, Sok Won
    • Korean Journal of Optics and Photonics
    • /
    • v.24 no.2
    • /
    • pp.71-76
    • /
    • 2013
  • Using fluorescence correlation spectroscopy, we analyzed the change of effective focal volume of a confocal system with light intensity. The fluorescence correlation spectroscopy system was home-built in accordance with the He-Ne laser with a wavelength of 632.8 nm, and two kinds of samples (AlexaFluor657 and Quantum dot655) suitable for the wavelength of the laser beam were used. For each sample, we analyzed and compared the correlation functions obtained while changing the intensity of the light source in a range of 1~50 ${\mu}W$. The result shows that the radius of the focal area increases linearly through the increase of particle number and diffusion time in response to an intensity change in weak light below 10 ${\mu}W$. In the higher intensity region (>10~15 ${\mu}W$), the increasing rate of particle number and diffusion time keep increasing but at a much slower rate. Through this result, it was also found that the radius increasing rate of the focal area was reduced however, the radius still increased slightly.

Luminescence properties of asymmetric double quantum well composed of $Al_xGa_{l-x}As/AlAs/GaAs$ system ($Al_xGa_{l-x}As/AlAs/GaAs$계로 이루어진 비대칭 이중 양자우물 구조에서의 광 luminescsnce 특성 연구)

  • 정태형;강태종;이종태;한선규;유병수;이해권;이정희;이민영;김동호
    • Korean Journal of Optics and Photonics
    • /
    • v.3 no.3
    • /
    • pp.183-190
    • /
    • 1992
  • Luminescence properties of asymmetric double quantum well structure composed of $Al_x/Ga_{1-x}$ /As AIAs/GaAs have been studied by steady state and time-resolved photoluminescence and phtoluminescence excitation spectroscopy at low temperature. Two quantum well samples with different barrier thickness (15$\AA$ and 150$\AA$) were prepared to investigate the dependence of tunneling characteristics on barrier thickness. The abscence of excitonic recombination peak from $Al_x/Ga_{1-x}$As well for the 15$\AA$ barrier sample indicates a very fast electron tunneling to GaAs well. Meanwhile, T-X transition between well and barrier is supposed to be a major route for the fast decay of luminescence from $Al_x/Ga_{1-x}$As well in the 150$\AA$ barrier sample. Time-resolved photduminescence from GaAs well of 15$\AA$ sample shows the exsitence of the rise with 100 ps which is attributed to the hole tunneling.

  • PDF

Effective Coupling of a Topological Corner-state Nanocavity to Various Plasmon Nanoantennas

  • Ma, Na;Jiang, Ping;Zeng, You Tao;Qiao, Xiao Zhen;Xu, Xian Feng
    • Current Optics and Photonics
    • /
    • v.6 no.5
    • /
    • pp.497-505
    • /
    • 2022
  • Topological photonic nanocavities are considered to possess outstanding optical performance, and provide new platforms for realizing strong interaction between light and matter, due to their robustness to impurities and defects. Here hybrid plasmonic topological photonic nanocavities are proposed, by embedding various plasmon nanoantennas such as gold nanospheres, cylinders, and rectangles in a topological photonic crystal corner-state nanocavity. The maximum quality factor Q and minimum effective mode volume Veff of these hybrid nanocavities can reach the order of 104 and 10-4 (𝜆/n)3 respectively, and the high figures of merit Q/Veff for all of these hybrid nanocavites are stable and on the order of 105 (𝜆/n)-3. The relative positions of the plasmon nanoantennas will influence the coupling strength between the plasmon structures and the topological nanocavity. The hybrid nanocavity with gold nanospheres possesses much higher Q, but relatively large Veff. The presence of a gold rectangular structure can confine more electromagnetic energy within a smaller space, since its Veff is smallest, although Q is lowest among these structures. This work provides an outstanding platform for cavity quantum electrodynamics and has a wide range of applications in topological quantum light sources, such as single-photon sources and nanolasers.

Hyperlens and Metalens-based Biomedical Imaging (하이퍼렌즈 및 메타렌즈 기반 바이오메디컬 이미징)

  • Hyemi Park;Yongjae Jo;Inki Kim
    • Korean Journal of Optics and Photonics
    • /
    • v.35 no.4
    • /
    • pp.135-142
    • /
    • 2024
  • Biomedical imaging technologies refer to imaging techniques used in biological research and medical technology that are essential for exploring biological processes, structures, and conditions. They also play a crucial role in the early diagnosis of diseases and the development of treatments. Optical imaging technologies, in particular, are the most widely used and actively researched in biological studies. The major obstacles to technological advancement are the limitations in resolution and light penetration depth. Recently, many technologies have been studied to overcome these limitations using metamaterials. These are materials that can freely manipulate the properties of light through the regular arrangement of nanostructures and have established themselves as innovative tools in the imaging field. This article aims to provide a detailed introduction to the working principles and key applications of these technologies.

The description of wigner function and density matrix by computer tomograph (전산 시늉에 의한 위그너 함수와 밀도 행렬이 기술)

  • 강장원;조기현;윤선현
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.6
    • /
    • pp.441-446
    • /
    • 2000
  • Wigner functions and density matrices are computer simulated for various quantum mechanical states of light. Wigner function and density matrices are evaluated by filtered back projection which includes inverse Radon transform from the distribution function of the photocurrents, which are calculated in the balanced homodyne detection scheme. The density matrix is also directly obtained by using the pattern function from the simulated phase independent photocurrent distribution function. ction.

  • PDF

A study on waveguide properties of InGaAs/InGaAsP GRINSCH MQW laser (InGaAs/InGaAsP GRINSCH MQW 구조의 파동길잡이 성질 연구)

  • 김동철;유건호
    • Korean Journal of Optics and Photonics
    • /
    • v.7 no.3
    • /
    • pp.272-279
    • /
    • 1996
  • A simple transfer matrix algorithm to analyze the properties of 2 dimensional waveguides is introduced. We applied this algorithm to strained InGaAs/InGaAsP GINSCH MQW laser structures. We studied how optical confinement factor and effective refractive index, which are important in calculating the modal gain, depend on the structure parameters such as waveguide width, shape of GRIN, and number of quantum wells. Especially we suggested that the concept of effective waveguide width is very useful in understanding the GRINSCH waveguide.

  • PDF

Fluorescence photon counting rate as a function of dye concentration: Effect of dead time of photon detector (색소 농도에 따른 형광 광자의 계수율 : 광자 검출기의 dead time 효과)

  • 고동섭
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.4
    • /
    • pp.353-355
    • /
    • 1997
  • A single molecule detection system, which consists of confocal fluorescence microscope and single photon counter, has been used to observe the dye concentration dependence of photon counting rate. With increasing concentration, a saturation effect of counting is observed and demonstrated on the basis of the dead time of photon detector. The equations presented here show the relations between the counting rate and some parameters such as probe volume, quantum efficiency of detector, and fluorescence photon number entered onto detector. The signal-to-noise ratio is also discussed briefly.

  • PDF