• Title/Summary/Keyword: quantum optics

Search Result 231, Processing Time 0.029 seconds

Spectral Behaviors of Unidirectional Lasing from Various Semiconductor Square Ring Microcavities

  • Moon, Hee-Jong;Hyun, Kyung-Sook;Lim, Changhwan
    • Journal of the Korean Physical Society
    • /
    • v.73 no.10
    • /
    • pp.1506-1511
    • /
    • 2018
  • Spectral behaviors of lasing from semiconductor square ring microcavities with structures for unidirectional laser oscillation were investigated. When a tapered structure was introduced, the lasing envelope shifted to a shorter wavelength region. Statistical estimate of the additional loss caused by the tapered structure was carried out by analyzing spectral data from many sets of cavities with various sizes. When a saw-edged structure was introduced, the unidirectional lasing functioned well but no apparent spectral shift was observed due to negligible additional loss.

Self-Assembled InAs/AlAs Quantum Dots Characterization Using Photoreflectance Spectroscopy (자연 성장된 InAs/AlAs 양자점의 Photoreflectance 특성)

  • Kim, Ki-Hong;Sim, Jun-Hyoung;Bae, In-Ho
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.3
    • /
    • pp.208-212
    • /
    • 2009
  • The optical characterization of self-assembled InAs/AlAs quantum dots(QD) grown by MBE were investigated using photoreflectance spectroscopy. The intensities of the signals of the GaAs buffer and wetting layer(WL) changed with the width of the WL layer. The PR spectrum for the sample, in which QDs layer were etched off at room temperature, indicated that the broadened signal ranging $1.1{\sim}1.4\;eV$ was originated from InAs QDs and WL. The intensities of signals of GaAs buffer and the WL changed with the WL width. A red shift of the PR peak of WL are observed when the annealing temperatures range from $450^{\circ}C$ to $750^{\circ}C$, which indicates that the interdiffusion between dots and capping layer is caused by improvement in size uniformity of QDs.

In-situ measurement of Ce concentration in high-temperature molten salts using acoustic-assisted laser-induced breakdown spectroscopy with gas protective layer

  • Yunu Lee;Seokjoo Yoon;Nayoung Kim;Dokyu Kang;Hyeongbin Kim;Wonseok Yang;Milos Burger;Igor Jovanovic;Sungyeol Choi
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4431-4440
    • /
    • 2022
  • An advanced nuclear reactor based on molten salts including a molten salt reactor and pyroprocessing needs a sensitive monitoring system suitable for operation in harsh environments with limited access. Multi-element detection is challenging with the conventional technologies that are compatible with the in-situ operation; hence laser-induced breakdown spectroscopy (LIBS) has been investigated as a potential alternative. However, limited precision is a chronic problem with LIBS. We increased the precision of LIBS under high temperature by protecting optics using a gas protective layer and correcting for shotto-shot variance and lens-to-sample distance using a laser-induced acoustic signal. This study investigates cerium as a surrogate for uranium and corrosion products for simulating corrosive environments in LiCl-KCl. While the un-corrected limit of detection (LOD) range is 425-513 ppm, the acoustic-corrected LOD range is 360-397 ppm. The typical cerium concentrations in pyroprocessing are about two orders of magnitude higher than the LOD found in this study. A LIBS monitoring system that adopts these methods could have a significant impact on the ability to monitor and provide early detection of the transient behavior of salt composition in advanced molten salt-based nuclear reactors.

Germination and Seedling Growth in Response to Ionizing Radiation in Creeping Bentgrass (Agrostis palustris Huds.)

  • Lee, Yong Jin;Hong, Min Jeong;Kim, Dae Yeon;Lee, Tong Geon;Kim, Dong Sub;Kim, Jin Baek;Lee, Byung Cheol;Han, Young Hwan;Seo, Yong Weon
    • Korean Journal of Breeding Science
    • /
    • v.40 no.1
    • /
    • pp.15-21
    • /
    • 2008
  • It was previously pointed out that mutation is the ultimate source of variation. Adequate variation is needed for plant breeding if there is a limitation in natural genetic resources. When the ionizing radiation has been known to cause chromosomal and genomic alternations, it is widely used for inducing mutagenesis. The electron beam as an ionizing radiation is the principal physical mutagens that induces mutation and effectively used in plant breeding. Since dose-response relationships of electron beam in plant species are rarely known, we investigated the seed germination rate and early seedling growth of irradiated seeds of creeping bentgrass (Agrostis palustris Huds., cv Penn-A1) with various electron beam irradiating conditions (1, 1.3, 2 MeV at both 0.03 mA and 0.06 mA with dose of 100 Gy (Gray) and 0.03, 1, 1.3, 2 MeV at 0.03 mA with dose of 200 Gy, respectively) using electron accelerator at Korea Atomic Energy Research Institute. The growth parameters in terms of shoot length, primary root length, and secondary root length showed similar response between 0.06 / 1 (mA / MeV) at 100 Gy and 0.03 / 0.3 (mA / MeV) at 200 Gy. Bentgrass seed germination was mainly affected by the intensity of irradiated dose (Gray). Germination rate was lowered as the irradiated dose increased. On the other hand, early seedling growth was mainly governed not by the dose of radiation but by voltage.

Electrooptic Modulator with InAs Quantum Dots (InAs/InGaAs 양자점을 이용한 전계광학변조기)

  • Ok, Seong-Hae;Moon, Yon-Tae;Choi, Young-Wan;Son, Chang-Wan;Lee, Seok;Woo, Deok-Ha;Byun, Young-Tae;Jhon, Young-Min;Kim, Sun-Ho;Yi, Jong-Chang;Oh, Jae-Eung
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.3
    • /
    • pp.278-284
    • /
    • 2006
  • We have fabricated and measured electrooptic modulator using coupled stack InAs/InGaAs quantum dots. The height of the quantum dot is 16 nm and quantum dots are stacked including an InGaAs capping layer. The peak wavelength of photoluminescence is 1260 nm at room temperature and 1158 nm at 12 K. The operation characteristics of the quantum dots show high modulation efficiency of electrooptic modulator at 1550 nm compared to that of existing III-V bulk and MQW type semiconductor. The measured switching voltage ($V\pi$) is 540 and 600 mV, for TE mode and TM mode, respectively. From the results, the modulation efficiency can be determined as 333.3 and $300^{\circ}/V{\cdot}mm$ for TE and TM modes. The results reported here may lead to the design and fabrication of a novel electrooptic modulator with low switching voltage and high efficiency.

Filamentation and α-factor of broad area laser diodes (대면적 레이저 다이오드의 필라멘테이션과 α-factor)

  • Han, Il-Ki;Her, Du-Chang;Lee, Jung-Il;Lee, Joo-In
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.4
    • /
    • pp.319-323
    • /
    • 2002
  • 1.55 ${\mu}m$multi-quantum well (MQW) broad area laser diodes with different linewidth enhancement factors ($\alpha{-factor}$) of 2 and 4 were fabricated. The far-fields of the laser diodes were measured. It was observed that the full width at half maximum (FWHM) of the far-fields and the filamentations were reduced in the laser diodes for which the value of the $\alpha{-factor}$ was small. As injection current increased, the FWHM of the far-field also increased regardless of the a-factor. This phenomenon was explained by reduction of filament spacing as injection current increased.

Determination of photo- and electroluminescence quantum efficiency of semiconducting polymers (전기발광고분자의 양자효율 측정)

  • 이광희;박성흠;김진영;진영읍;서홍석
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.2
    • /
    • pp.128-133
    • /
    • 2002
  • In a recent effort to develop polymer light-emitting diodes (LEDs) as promising flat panel display components, measurements of reliable absolute photoluminescence (PL) and electroluminescence (EL) efficiency for polymer materials are required. In this work, we performed the measurement of PL and EL efficiency of luminescent polymers using an integrating sphere technique. The external PL efficiency of MEH-PPV was estimated to be 8 ($\pm$2)% together with the value of 0.02 1m/W for the external EL efficiency. This PL efficiency is in good agreement with published values, indicating that our PL efficiency measurements are somewhat legitimate. We believe this study might contribute to the research and development of organic materials for optoelectronic devices.

An InGaAs/InAlAs multi-quantum well (MQW) avalanche photodiode (APD) with a spacer layer showing low dark current and high speed (고속 광통신 시스템을 위한 다중양자우물구조의 애벌런치 광다이오드의 설계 및 제작)

  • ;;D.L.Sivco;A.Y.Cho;J.M.M.Rios
    • Korean Journal of Optics and Photonics
    • /
    • v.7 no.4
    • /
    • pp.440-444
    • /
    • 1996
  • In this paper, we report an InGaAs/InAlAs multi-quantum well (MQW) avalanche photodiode (APD) showing a performance suitable for 10 Gbps lightwave communications. In designing the device, emphasis is given on the effect of indiffusion of Be dopant from the highly doped field layer into the MQW multiplication region. It is found that a small amount of diffusion can alter the dark current and gain characteristics of the device significantly. A spacer used to restrain such indiffusion is shown effective in reducing dark current (500 nA at a gain of 10) while maintaining a high bandwidth (10 GHz at a gain of 10) devices grown by molecular beam epitaxy.

  • PDF

Analysis of Detuning-filter-assisted All-optical Wavelength Conversion Based on a Semiconductor Optical Amplifier with Strong Wavelength Dependence of Gain and Phase

  • Qin, Cui;Zhao, Jing;Yu, Huilong;Zhang, Jian
    • Current Optics and Photonics
    • /
    • v.1 no.6
    • /
    • pp.579-586
    • /
    • 2017
  • In this paper, we theoretically demonstrate that semiconductor optical amplifiers (SOAs) with strong wavelength dependence of gain and phase are capable of all-optical inverted and non-inverted wavelength conversion (WC) over a wide range, with the assistance of an optical filter. First, the gain dynamics and phase dynamics in a common quantum well (QW) SOA with the $In_{0.53}Ga_{0.47}As/In_{0.7322}Ga_{0.2678}As_{0.5810}P_{0.4190}$ material system are found to be strongly dependent on wavelength, which is mainly related to the wavelength dependence of the differential gain and the differential refractive-index change. Second, the wavelength dependence in an all-optical wavelength converter based on the QW SOA cascaded with a detuning band pass filter is studied. Simulations show that the quality of the converted signal has little dependence on the operation wavelength. Both inverted and non-inverted WC can be achieved, over a large wavelength range. Therefore, although the gain and phase change are strongly wavelength-dependent, the effects of this dependence can be erased by appropriate optical filtering.

Measurement and Analysis of Phosphor Conversion Efficiency for Color-Matching LCDs (Color-Matching LCD를 위한 형광체 전환효율의 측정과 분석)

  • Jeon, Hwa Jun;Lim, Gyo Sung;Na, Dae Gil;Kwon, Jin Hyuk
    • Korean Journal of Optics and Photonics
    • /
    • v.24 no.5
    • /
    • pp.256-261
    • /
    • 2013
  • Power conversion efficiency of the red and green phosphors was measured and analyzed. Two different samples of phosphors of thickness 50 ${\mu}m$ were prepared: one was the phosphor layer coated on the transparent substrate and the other was prepared on the reflective substrate. The 445 nm blue laser diode beam was used as the exciting beam. The conversion efficiencies of the red and green phosphor layers were 41.4% and 46%, respectively. The quantum efficiencies of the red and green phosphors were 60.4% and 53.5%, respectively.