• Title/Summary/Keyword: quantum double

Search Result 122, Processing Time 0.026 seconds

Energy-band model on photoresponse transitions in biased asymmetric dot-in-double-quantum-well infrared detector

  • Sin, Hyeon-Uk;Choe, Jeong-U;Kim, Jun-O;Lee, Sang-Jun;No, Sam-Gyu;Lee, Gyu-Seok;Krishna, S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.234-234
    • /
    • 2010
  • The PR transitions in asymmetric dot-in-double-quantum-well (DdWELL) photodetector is identified by bias-dependent spectral behaviors. Discrete n-i-n infrared photodetectors were fabricated on a 30-period asymmetric InAs-QD/[InGaAs/GaAs]/AlGaAs DdWELL wafer that was prepared by MBE technique. A 2.0-monolayer (ML) InAs QD ensemble was embedded in upper combined well of InGaAs/GaAs and each stack is separated by a 50-nm AlGaAs barrier. Each pixel has circular aperture of 300 um in diameter, and the mesa cell ($410{\times}410\;{\mu}m^2$) was defined by shallow etching. PR measurements were performed in the spectral range of $3{\sim}13\;{\mu}m$ (~ 100-400 meV) by using a Fourier-transform infrared (FTIR) spectrometer and a low-noise preamplifier. The asymmetric photodetector exhibits unique transition behaviors that near-/far-infrared (NIR/FIR) photoresponse (PR) bands are blue/red shifted by the electric field, contrasted to mid-infrared (MIR) with no dependence. In addition, the MIR-FIR dual-band spectra change into single-band feature by the polarity. A four-level energy band model is proposed for the transition scheme, and the field dependence of FIR bands numerically calculated by a simplified DdWELL structure is in good agreement with that of the PR spectra. The wavelength shift by the field strength and the spectral change by the polarity are discussed on the basis of four-level transition.

  • PDF

Construction and Operation of a 37-channel Hemispherical Magnetoencephalogram System (37채널 반구형 뇌자도 측정장치 제작 및 동작)

  • 이용호;김진목;권혁찬;김기웅;박용기;강찬석;이순걸
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.159-165
    • /
    • 2003
  • We developed a 37-channel magnetoencephalogram (MEG) measurement system based on low-noise superconducting quantum interference device (SQUID) magnetometets, and operated the system to measure MEG signals. By using double relaxation oscillation SQUIDs with high flux-4o-voltage transfers, the SQUID outputs could be measured directly by room temperature preamplifiers and compact readout circuits were used for SQUID operation. The average field noise level of the magnetometers is about 3 fT/√Hz in the white region, low enough for MEG measurements when operated inside a magnetically shielded room. The 37 magnetometers were distributed on a hemispherical surface haying a radius of 125 mm. In addition to the 37 sensing channels. 11 reference channels were installed to pickup external noise and to form software gradiometers. A low-noise liquid helium dewar was fabricated with a liquid capacity of 30 L and boil-off rate of 4 L/d. The signal processing software consists of digital filtering, software gradiometer, isofield mapping and source localization. By using the developed system, we measured auditory-evoked fields and localized the current dipoles, demonstrating the effectiveness of the system.

Package Optimization for Maximizing the Modulation Performance of 10 Gbps MQW Modulator (10 Gbps용 MQW 광변조기의 변조 성능 극대화를 위한 최적 패키지에 관한 연구)

  • 김병남;이해영
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.10
    • /
    • pp.91-97
    • /
    • 1998
  • The modulation performance of 10 Gbps electro-absorption InGaAsP/InGaAsP strain compensated MQW (Multiple Quantum Well) modulator module depends on the modulator as well as the package parasitics. The high frequency package parasitics resulting from various structural discontinuities, limit the modulation bandwidth and increase the chirp-parameter. Therefore, we propose the double bondwires embedded in dielectric materials to minimize the bondwire parasitics. Using the proposed structure with 50 $\Omega$ terminating resistor, the modulation bandwidth is greatly increased by 125 % than the bare chip and the chirp-parameter is also reduced. This technique can be used in optimizing the package of high speed external modulators.

  • PDF

Ab Initio Quantum Mechanical Investigation of H2(An+1X2n)H2(A=C or Si, X=O or S, n = 1-2)]; Energetics, Molecular Structures, and Vibrational Frequencies

  • Choi, Kun-Sik;Kim, Hong-Young;Kim, Seung-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.1
    • /
    • pp.119-126
    • /
    • 2005
  • The geometrical parameters, vibrational frequencies, and relative energies of H$_2$(A$_{n+1}$X$_{2n}$)H$_2$ (A=C or Si, X=O or S, n = 1-2) oligomers have been investigated using high level ab initio quantum mechanical techniques with large basis sets. The equilibrium geometries have been optimized at the self-consistent field (SCF), the coupled cluster with single and double excitation (CCSD), and the CCSD with connected triple excitations [CCSD(T)] levels of theory. The highest level of theory employed in this study is cc-pVTZ CCSD(T). Harmonic vibrational frequencies and IR intensities are also determined at the SCF level of theory with various basis sets and confirm that all the optimized geometries are true minima. Also zero-point vibrational energies have been considered to predict the dimerization and the relative energies.

Numerical Design of Double Quantum Coherence Filter for the Detection of Myo-Inositol In vivo (인체 내 myo-Inositol 검출을 위한 수치해석적 이중양자 필터 디자인)

  • Lee, Yun-Jung;Jung, Jin-Young;Noh, Hyung-Joon;Yu, Ung-Sik;Kim, Hyeon-Jin
    • Investigative Magnetic Resonance Imaging
    • /
    • v.13 no.2
    • /
    • pp.117-126
    • /
    • 2009
  • Purpose : A numerical method of designing a multiple quantum filter (MQF) is presented for the optimum detection of myo-inositol (mI), an important brain metabolite, by using in vivo proton nuclear magnetic resonance spectroscopy ($^1$-HMRS). Materials and Methods : Starting from the characterization of the metabolite, the filter design includes the optimization of the sequence parameters such as the two echo times (TEs), the mixing time (TM), and the flip angle and offset frequency of the 3rd $90^{\circ}$ pulse which converts multiple quantum coherences (MQCs) back into single quantum coherences (SQCs). The optimized filter was then tested both in phantom and in human brains. Results : The results demonstrate that the proposed MQF can improve the signal-to-background ratio of the target metabolite by a factor of more than three by effectively suppressing the signal from the background metabolites. Conclusion : By incorporating a numerical method into the design of MQFs in $^1$-HMRS the spectral integrity of a target metabolite, in particular, with a complicated spin system can be substantially enhanced.

  • PDF

A semispherical SQUID magnetometer system using high sensitivity double relaxation oscillation SQUIDs for magnetoencephalographic measurements

  • Lee, Yong-Ho;Hyukchan Kwon;Kim, Jin-Mok;Kim, Kwoong;Park, Yong-Ki
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.1
    • /
    • pp.21-26
    • /
    • 2003
  • We designed and constructed a multichannel superconducting quantum interference device (SQUID) magnetometer system to measure magnetic fields from the human brain. We used a new type of SQUID, the double relaxation oscillation SQUID (DROS). With high flux-to-voltage transfers of the DROS, about 10 times larger than the dc SQUIDs, simple flux-locked loop circuits could be used for SQUID operation. Also the large modulation voltage of the DROS, typically being 100 $mutextrm{V}$, enabled stable flux-locked loop operation against the thermal offset voltage drift of the preamplifier. The magnetometers were fabricated using the Nb/AlOx/Nb junction technology. The SQUID system consists of 37 signal magnetometers, distributed on a semispherical surface, and 11 reference channels were installed to pickup background noises. External feedback was used to eliminate the magnetic coupling with the adjacent channels. The liquid helium dewar has a capacity of 29 L and boil-off rate of about 4 L/d with the total 48 channel insert. The magnetometer system has an average noise level of 3 fT/√Hz at 100 Hz, inside a shielded loon, and was applied to measure auditory-evoked fields.

Highly Stabilized Protocrystalline Silicon Multilayer Solar Cells (고 안정화 프로터결정 실리콘 다층막 태양전지)

  • Lim Koeng Su;Kwak Joong Hwan;Kwon Seong Won;Myong Seung Yeop
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.102-108
    • /
    • 2005
  • We have developed highly stabilized (p-i-n)-type protocrystalline silicon (pc-Si:H) multilayer solar cells. To achieve a high conversion efficiency, we applied a double-layer p-type amorphous silicon-carbon alloy $(p-a-Si_{1-x}C_x:H)$ structure to the pc-Si:H multilayer solar cells. The less pronounced initial short wavelength quantum efficiency variation as a function of bias voltage proves that the double $(p-a-Si_{1-x}C_x:H)$ layer structure successfully reduces recombination at the p/i interface. It was found that a natural hydrogen treatment involving an etch of the defective undiluted p-a-SiC:H window layer before the hydrogen-diluted p-a-SiC:H buffer layer deposition and an improvement of the order in the window layer. Thus, we achieved a highly stabilized efficiency of $9.0\%$ without any back reflector.

  • PDF

Yellow Light-Emitting Poly(p-phenylenevinylene) Derivative with Balanced Charge Injection Property

  • Kim, Joo-Hyun;Lee, Hoo-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.5
    • /
    • pp.652-656
    • /
    • 2004
  • A new luminescent polymer, poly{1,4-phenylene-1,2-ethenediyl-2'-[2"-(4'"-octyloxyphenyl)-(5"-yl)-1",3",4"-oxadiazole]-1,4-phenylene-1,2-ethenediyl-2,5-bis-dodecyloxy-1,4-phenylene-1,2-ethenediyl} (Oxd-PPV), was synthesized by the Heck coupling reaction. Electron withdrawing pendant, conjugated 1,3,4-oxadiazole (Oxd), is on the vinylene unit. The band gap of the polymer figured out from the UV-visible spectrum was 2.23 eV and the polymer film shows bright yellow emission maximum at 552 nm. The electroluminescence (EL) maximum of double layer structured device (ITO/PEDOT:PSS/Oxd-PPV/Al) appeared at 553 nm. Relative PL quantum yield of Oxd-PPV film is 3.6 times higher than that of MEH-PPV film. The HOMO and LUMO energy levels of Oxd-PPV figured out from the cyclic voltammogram and the UV-visible spectrum are -5.32 and -3.09 eV, respectively, so that more balanced hole and electron injection efficiency can be expected compared to MEH-PPV. A double layer EL of Oxd-PPV has an maximum efficiency of 0.15 cd/A and maximum brightness of 464 cd/$m^2$.

An Analysis of Heterosis in the Silkworm, Bombyx mori (L.)

  • Singh, Tribhuwan;Saratchandra, Beera;Murthy, Geetha N.
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.5 no.1
    • /
    • pp.23-32
    • /
    • 2002
  • The introduction of hybrid and exploitation of heterosis has played a vital role in Indian sericulture industry, which clearly depicts a quantum jump in silk production during the last four decades. Since, the introduction of heterosis, progress in silkworm breeding has depended on success or failure in identifying better combiners. Systematic procedures developed have enabled the breeders to identify the best combiners by combining ability test, line ${\TIMES}$ tester analysis or $D^2$ analysis for maximum expression of heterosis. The level of heterosis expressed in the crossbreed population is determined by the interaction between genotype and prevailing environmental factors. Except some of the pre and post cocoon parameters, heterosis is invariably higher in single crosses compared to three-way and double crosses. However, during hot and humid season, when rearing of F1 bivoltine hybrid is unsuccessful at field level and indigenous races results in very low and poor quality yield, three-way and double crosses can play an important role as an intermediary technology. The objective of this article is to review briefly the concept and causes of heterosis, utilization of different forms of heterosis in silk production and its significance in silkworm, Bombyx mori breeding.

Branched DNA-based Synthesis of Fluorescent Silver Nanocluster

  • Park, Juwon;Song, Jaejung;Park, Joonhyuck;Park, Nokyoung;Kim, Sungjee
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.1105-1109
    • /
    • 2014
  • While single strand DNAs have been widely used for the scaffold of brightly fluorescent silver nanoclusters (Ag NCs), double strand DNAs have not been as successful. Herein, we report a novel synthetic approach for bright Ag NCs using branched double strand DNAs as the scaffolds for synthesis. X-shaped DNA (X-DNA) and Y-shaped DNA (Y-DNA) effectively stabilized Ag NCs, and both X-DNA and Y-DNA resulted in brightly fluorescent Ag NCs. The concentration and molar ratio of silver and DNA were found important for the fluorescence efficiency. The brightest Ag NC with the photoluminescence quantum efficiency of 19.8% was obtained for the reaction condition of 10 ${\mu}M$ X-DNA, 70 ${\mu}M$ silver, and the reaction time of 48 h. The fluorescence lifetime was about 2 ns for the Ag NCs and was also slightly dependent on the synthetic condition. Addition of Cu ions at the Ag NC preparations resulted in the quenching of Ag NC fluorescence, which was different to the brightening cases of single strand DNA stabilized Ag NCs.