• Title/Summary/Keyword: quantum double

Search Result 122, Processing Time 0.024 seconds

Growth of GaAs/AlGaAs Superlattice and HEMT Structures by MOCVD (MOCVD에 의한 GaAs/AlGaAs 초격자 및 HEMT 구조의 성장)

  • Kim, Moo-Sung;Kim, Yong;Eom, Kyung-Sook;Kim, Sung-Il;Min, Suk-Ki
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.2
    • /
    • pp.81-92
    • /
    • 1990
  • We developed the technologies of wuperlattice and HEMT structures grown by MOCVD, and their characterization. In the case of GaAs/AlGaAs superlattice, the periodicity, interface abruptness and Al compositional uniformity were confirmed through the shallow angle lapping technique and double crystal x-ray measurement. Photoluminesence spectra due to quantum size effect of isolated quantum wells were also observed. The heterojunction abruptness was estimated to be within 1 monolayer fluctuation by the analysis of the relation between PL FWHM(Full Width at Half Maximum) and well width. HEMT structure was successfully grown by MOCVD. The 2 dimensional electron gas formation at heterointerface in HEMT structure were evidenced through the C-V profile, SdH (Shubnikov-de Haas)oscillation and low temperature Hall measurement. Low field mobility were as high as $69,000cm^2/v.sec$ for a sheet carrier density of $5.5{\times}10^{11}cm^-2$ at 15K, and $41,200cm^2/v.sec$ for a sheet carrier density of $6.6{\times}10^{11}cm^-2$ at 77K. In addition, well defined SdH oscillation and quantized Hall plateaues were observed.

  • PDF

Modeling of Nano-scale FET(Field Effect Transistor : FinFET) (나노-스케일 전계 효과 트랜지스터 모델링 연구 : FinFET)

  • Kim, Ki-Dong;Kwon, Oh-Seob;Seo, Ji-Hyun;Won, Tae-Young
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.6
    • /
    • pp.1-7
    • /
    • 2004
  • We performed two-dimensional (20) computer-based modeling and simulation of FinFET by solving the coupled Poisson-Schrodinger equations quantum-mechanically in a self-consistent manner. The simulation results are carefully investigated for FinFET with gate length(Lg) varying from 10 to 80nm and with a Si-fin thickness($T_{fin}$) varying from 10 to 40nm. Current-voltage (I-V) characteristics are compared with the experimental data. Device optimization has been performed in order to suppress the short-channel effects (SCEs) including the sub-threshold swing, threshold voltage roll-off, drain induced barrier lowering (DIBL). The quantum-mechanical simulation is compared with the classical appmach in order to understand the influence of the electron confinement effect. Simulation results indicated that the FinFET is a promising structure to suppress the SCEs and the quantum-mechanical simulation is essential for applying nano-scale device structure.

Optical modulation characteristics of resonant tunneling diode oscillator (빛에 의한 공명투과다이오드 진동자의 주파수 변조 특성)

  • 추혜용;이일희
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.10
    • /
    • pp.139-143
    • /
    • 1996
  • We report on the static and dynamic characteristics of optically modulated resonant tunneling diode oscillator (RTDO) formed in double-barrier quantum-well structure. Under the illumination of Ti:Sapphire laser, the dc current-voltage (I-V) curves of RTDO shifted towared lower voltages. This characteristic was found to odify the series resistance, negtive differential resistance, capacitance, and the inductance of the RTDO. As a result, the resonant frequency of TRDO centered at 5.302 GHz was found to decrease about 20 MHz under the laser illumination. At a constnat bias voltage, the oscillation frequency decreased linearly as the laser power was increased.

  • PDF

Electrical Characteristics of $\delta$-doped SiGe p-channel MESFET ($\delta$ 도핑된 SiGe p-채널 MESFET의 특성 분석)

  • 이관흠;이찬호
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.541-544
    • /
    • 1998
  • A SiGe p-channel MESFET using $\delta-doped$ layers is designed and the considerable enhancement of the current driving capability of the device is observed from the result of simulation. The channel consists of double $\delta-doped$ layers separated by a low-doped spacer which consists of Si and SiGe. A quantum well is formed in the valence band of the Si/SiGe heterojunction and much more holes are accumulated in the SiGe spacer than those in the Si spacer. The saturation current is enhanced by the contribution of the holes inthe spacer. Among the design parameters that affect the performance of the device, the thickness of the SiGe layer and the Ge composition are studied. The thickness of $0~300\AA$ and the Ge composition of 0~30% are investigated, and the saturation current is observed to be increased by 45% compared with a double $\delta-doped$ Si p-channel MESFET.

  • PDF

Growth and Characterization of the Multi Quantum Wells by MBE(The Growth and Electrical Properties of Resonant Tunneling Structures) (MBE에 의한 다양자 우물제작 및 특성연구(공명투과 다이오드의 제작과 전기적 특 성))

  • 김순구;강태원;홍치유;정관수;주영도
    • Journal of the Korean Vacuum Society
    • /
    • v.1 no.1
    • /
    • pp.134-138
    • /
    • 1992
  • The GaAs/AlAs double barrier structures was grown by MBE(Mo1ecular Beam Epitaxy). Mesa diode was fabricated and I-V characteristics of the diode were measured by semiconductor parameter analyser at room temperature. TEM pictures show the double barrier structure with abrupt interface. PVCR(Peak to Valley Current Ratio) proves to be independent of barrier thickness. These results show that increase in barrier thickness leads to larger valley current by non-resonant tunneling.

  • PDF

Photochemical C$_4$-Cycloadduct Formation between 5(E)-Styryl-1,3-dimethyluracil and Some Olefins-Via Photochemical Diels-Alder Type [4 + 2] Adduct

  • Shim, Sang-Chul;Shin, Eun-Ju
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.5
    • /
    • pp.376-380
    • /
    • 1987
  • The cyclobutane forming photocycloaddition reaction of 5(E)-styryl-1,3-dimethyluracil with some olefins occurs on the 5,6-double bond of uracil ring rather than the expected central double bond via an intermediate, probably the photochemical Diels-Alder type adduct. This intermediate formed on short term irradiation of 5(E)-styryl-1,3-dimethyluracil and 2,3-dimethyl-2-butene solution is converted into the $C_4$-cycloadduct on the prolonged irradiation. Quantum yield of the intermediate formation is not linear with the concentration of 2,3-dimethyl-2-butene probably due to the secondary reaction accompanied with the complex reaction kinetics. The intermediate is formed from the lowest excited singlet state.

The Bonding Nature and Low-Dimensional Magnetic Properties of Layered Mixed Cu(II)-Ni(II) Hydroxy Double Salts

  • Park, Seong-Hun;Huh, Young-Duk
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.768-772
    • /
    • 2013
  • Layered mixed metal hydroxy double salts (HDS) with the formulas $(Cu_{0.75}Ni_{0.25})_2(OH)_3NO_3$ ((Cu, Ni)-HDS) and $Cu_2(OH)_3NO_3$ ((Cu, Cu)-HDS) were prepared via slow hydrolysis reactions of CuO with $Ni(NO_3)_2$ and $Cu(NO_3)_2$, respectively. The crystal structures, morphologies, bonding natures, and magnetic properties of (Cu, Ni)-HDS and (Cu, Cu)-HDS were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transformation infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), and a superconducting quantum interference device (SQUID). Even though (Cu, Ni)-HDS has a similar layered structure to that of (Cu, Cu)-HDS, the bonding nature of (Cu, Ni)-HDS is slightly different from that of (Cu, Cu)-HDS. Therefore, the magnetic properties of (Cu, Ni)-HDS are significantly different from those of (Cu, Cu)-HDS. The origin of the abnormal magnetic properties of (Cu, Ni)-HDS can be explained in terms of the bonding natures of the interlayer and intralayer structures.

Double-walled carbon nanotubes: synthesis, structural characterization, and application

  • Kim, Yoong Ahm;Yang, Kap-Seung;Muramatsu, Hiroyuki;Hayashi, Takuya;Endo, Morinobu;Terrones, Mauricio;Dresselhaus, Mildred S.
    • Carbon letters
    • /
    • v.15 no.2
    • /
    • pp.77-88
    • /
    • 2014
  • Double walled carbon nanotubes (DWCNTs) are considered an ideal model for studying the coupling interactions between different concentric shells in multi-walled CNTs. Due to their intrinsic coaxial structures they are mechanically, thermally, and structurally more stable than single walled CNTs. Geometrically, owing to the buffer-like function of the outer tubes in DWCNTs, the inner tubes exhibit exciting transport and optical properties that lend them promise in the fabrication of field-effect transistors, stable field emitters, and lithium ion batteries. In addition, by utilizing the outer tube chemistry, DWCNTs can be useful for anchoring semiconducting quantum dots and also as effective multifunctional fillers in producing tough, conductive transparent polymer films. The inner tubes meanwhile preserve their excitonic transitions. This article reviews the synthesis of DWCNTs, their electronic structure, transport, and mechanical properties, and their potential uses.

Ab Initio Quantum Mechanical Studies of 1,2-, 1,3-Dioxetanes and 1,3-Cyclodisiloxane; Energetics, Molecular Structures, Vibrational Frequencies (1,2-, 1,3-dioxetanes, 그리고 1,3-cyclodisiloxane의 분자구조, 에너지와 진동주파수에 대한 순 이론 양자 역학적 연구)

  • Choi Kun-Sik Choi;Seung-Joon Kim
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.4
    • /
    • pp.325-333
    • /
    • 2003
  • The geometrical parameters, vibrational frequencies, and relative energies for 1,2-, 1,3-dioxetanes, and 1,3-cyclodisiloxane have been investigated using high level ab initio quantum mechanical techniques with large basis sets. The geometries have been optimized at the self-consistent field(SCF), the single and double excitation configuration interaction(CISD), the coupled cluster with single and double excitation(CCSD), and the CCSD with connected triple excitations[CCSD(T)] levels of theory. The highest level of theory employed in this study is TZ2P CCSD(T). Harmonic vibrational frequencies and IR intensities are also determined at the SCF level of theory with various basis sets and confirm that all the optimized geometries are true minima. Also zero-point vibrational energies have been considered to predict the dimerization energies for 1,2- and 1,3-isomers.

The ab Initio Quantum Mechanical Investigation for the Weakly Bound $H^+_{2n+1}$(n=1-6) Complexes (약한 결합을 갖는 $H^+_{2n+1}$(n=1-6) complex들에 대한 순 이론 양자역학적 연구)

  • In, Eun Jeong;Seo, Hyeon Il;Kim, Seung Jun
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.5
    • /
    • pp.401-412
    • /
    • 2001
  • The geometrical parameters, vibrational frequencies, and dissociation energies for $H_{2n+1}^+$ (n=1~6) clusters have been investigated using high level ab initio quantum mechanical techniques with large basis sets. The equilibrium geometries have been optimized at the self-consistent field (SCF), the single and double excitation configuration interaction (CISD), the coupled cluster with single and double excitation (CCSD), and the CCSD with connected triple excitations [CCSD(T)] levels of theory. The highest levels of theory employed in this study are TZ2P+d CCSD(T) up to $H^+_g$ and TZ2P CCSD(T) for $H_{11}^+$ and $H_{13}^+$. Harmonic vibrational frequencies are also determined at the SCF level of theory with various basis sets and confirm that all the optimized geometries are true minima. The dissociation energies, $D_e$, for $H_{2n+1}^+$ (n=26) have been predicted using energy differences at each optimized geometry and zero-point vibrational energies(ZPVEs) have been considered to compare with experimental dissociation energies, $D_0$.

  • PDF