• Title/Summary/Keyword: quantum dots (QDs)

Search Result 185, Processing Time 0.024 seconds

Recent Progress in High-Luminance Quantum Dot Light-Emitting Diodes

  • Rhee, Seunghyun;Kim, Kyunghwan;Roh, Jeongkyun;Kwak, Jeonghun
    • Current Optics and Photonics
    • /
    • v.4 no.3
    • /
    • pp.161-173
    • /
    • 2020
  • Colloidal quantum dots (QDs) have gained tremendous attention as a key material for highly advanced display technologies. The performance of QD light-emitting diodes (QLEDs) has improved significantly over the past two decades, owing to notable progress in both material development and device engineering. The brightness of QLEDs has improved by more than three orders of magnitude from that of early-stage devices, and has attained a value in the range of traditional inorganic LEDs. The emergence of high-luminance (HL) QLEDs has induced fresh demands to incorporate the unique features of QDs into a wide range of display applications, beyond indoor and mobile displays. Therefore it is necessary to assess the present status and prospects of HL-QLEDs, to expand the application domain of QD-based light sources. As part of this study, we review recent advances in HL-QLEDs. In particular, based on reports of brightness exceeding 105 cd/㎡, we have summarized the major approaches toward achieving high brightness in QLEDs, in terms of material development and device engineering. Furthermore, we briefly introduce the recent progress achieved toward QD laser diodes, being the next step in the development of HL-QLEDs. This review provides general guidelines for achieving HL-QLEDs, and reveals the high potential of QDs as a universal material solution that can enable realization of a wide range of display applications.

Optical Characteristics of CdSe/ZnS Quantum Dot with Precursor Flow Rate Synthesized by using Microreactor (마이크로리액터를 이용한 전구체 유속에 따른 CdSe/ZnS 양자점의 광학특성)

  • Park, Ji Young;Jeong, Da-Woon;Ju, Won;Seo, Han Wook;Cho, Yong-Ho;Kim, Bum Sung
    • Journal of Powder Materials
    • /
    • v.23 no.2
    • /
    • pp.91-94
    • /
    • 2016
  • High-quality colloidal CdSe/ZnS (core/shell) is synthesized using a continuous microreactor. The particle size of the synthesized quantum dots (QDs) is a function of the precursor flow rate; as the precursor flow rate increases, the size of the QDs decreases and the band gap energy increases. The photoluminescence properties are found to depend strongly on the flow rate of the CdSe precursor owing to the change in the core size. In addition, a gradual shift in the maximum luminescent wave (${\lambda}_{max}$) to shorter wavelengths (blue shift) is found owing to the decrease in the QD size in accordance with the quantum confinement effect. The ZnS shell decreases the surface defect concentration of CdSe. It also lowers the thermal energy dissipation by increasing the concentration of recombination. Thus, a relatively high emission and quantum yield occur because of an increase in the optical energy emitted at equal concentration. In addition, the maximum quantum yield is derived for process conditions of 0.35 ml/min and is related to the optimum thickness of the shell material.

Strain-induced islands and nanostructures shape transition's chronology on InAs (100) surface

  • Gambaryan, Karen M.;Aroutiounian, Vladimir M.;Simonyan, Arpine K.;Ai, Yuanfei;Ashalley, Eric;Wang, Zhiming M.
    • Advances in nano research
    • /
    • v.2 no.4
    • /
    • pp.211-217
    • /
    • 2014
  • The self-assembled strain-induced sub-micrometric islands and nanostructures are grown from In-As-Sb-P quaternary liquid phase on InAs (100) substrates in Stranski-Krastanow growth mode. Two samples are under consideration. The first sample consists of unencapsulated islands and lens-shape quantum dots (QDs) grown from expressly inhomogeneous liquid phase. The second sample is an n-InAs/p-InAsSbP heterostructure with QDs embedded in the p-n junction interface. The morphology, size and shape of the structures are investigated by high-resolution scanning electron (SEM) and transmission electron (TEM) microscopy. It is shown that islands, as they decrease in size, undergo shape transitions. Particularly, as the volume decreases, the following succession of shape transitions are detected: sub-micrometric truncated pyramid, {111} facetted pyramid, {111} and partially {105} facetted pyramid, completely unfacetted "pre-pyramid", hemisphere, lens-shaped QD, which then evolves again to nano-pyramid. A critical size of $5{\pm}2nm$ for the shape transformation of InAsSbP-based lens-shaped QD to nano-pyramid is experimentally measured and theoretically evaluated.

Optical Properties of InAs Quantum Dots Grown by Changing Arsenic Interruption Time (As 차단 시간 변화에 의한 InAs 양자점의 광학적 특성)

  • Choi, Yoon Ho;Ryu, Mee-Yi;Jo, Byounggu;Kim, Jin Soo
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.2
    • /
    • pp.86-91
    • /
    • 2013
  • The optical properties of InAs quantum dots (QDs) grown on GaAs substrates grown by molecular beam epitaxy have been studied using photoluminescence (PL) and time-resolved PL measurements. InAs QDs were grown using an arsenic interruption growth (AIG) technique, in which the As flux was periodically interrupted by a closed As shutter during InAs QDs growth. In this study, the shutter of As source was periodically opened and closed for 1 (S1), 2 (S2), or 3 s (S3). For comparison, an InAs QD sample (S0) without As interruption was grown in a pure GaAs matrix for 20 s. The PL intensity of InAs QD samples grown by AIG technique is stronger than that of the reference sample (S0). While the PL peaks of S1 and S2 are redshifted compared to that of S0, the PL peak of S3 is blueshifted from that of S0. The increase of the PL intensity for the InAs QDs grown by AIG technique can be explained by the reduced InAs clusters, the increased QD density, the improved QD uniformity, and the improved aspect ratio (height/length). The redshift (blueshift) of the PL peak for S1 (S3) compared with that for S0 is attributed to the increase (decrease) in the QD average length compared to the average length of S0. The PL intensity, PL peak position, and PL decay time have been investigated as functions of temperature and emission wavelength. S2 shows no InAs clusters, the increased InAs QD density, the improved QD uniformity, and the improved QD aspect ratio. S2 also shows the strongest PL intensity and the longest PL decay time. These results indicate that the size (shape), density, and uniformity of InAs QDs can be controlled by using AIG technique. Therefore the emission wavelength and luminescence properties of InAs/GaAs QDs can also be controlled.

Silica-encapsulated ZnSe Quantum Dots as a Temperature Sensor Media (온도센서용 실리카에 담지된 ZnSe 양자점 소재)

  • Lee, Ae Ri;Park, Sang Joon
    • Applied Chemistry for Engineering
    • /
    • v.26 no.3
    • /
    • pp.362-365
    • /
    • 2015
  • Silica encapsulated ZnSe quantum dots (QDs) were prepared by employing two microemulsion systems: AOT/water/cyclohexane microemulsions containing ZnSe quantum dots with NP5/water/cyclohexane microemulsions containing tetraethylorthosilicate (TEOS). Using this method, cubic zinc blende nanoparticles (3 nm in diameter) were synthesized and encapsulated by silica nanoparticles (20 nm in diameter). The temperature dependence of photoluminescence (PL) for silica-encapsulated ZnSe QDs was investigated to evaluate this material as a temperature sensor media. The fluorescence emission intensity of silica-encapsulated ZnSe nanoparticles (NPs) was decreased with an increase of ambient temperature over the range from $30^{\circ}C$ to $60^{\circ}C$ and a linear relationship between the temperature and the emission intensity was observed. In addition, the temperature dependence of PL intensity for silica-encapsulated ZnSe NPs showed a reversible pattern on ambient temperature. A reversible temperature dependence of the luminescence combined with its insensitivity toward quenching by oxygen due to silica coating established this material as an attractive media for temperature sensor applications.

Solar Energy Conversion by the Regular Array of TiO2 Nanotubes Anchored with ZnS/CdSSe/CdS Quantum Dots Formed by Sequential Ionic Bath Deposition

  • Park, Soojeong;Seo, Yeonju;Kim, Myung Soo;Lee, Seonghoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.856-862
    • /
    • 2013
  • The photoanode electrode of $TiO_2$ nanotubes (NTs) anchored with ZnS/CdSSe/CdS quantum dots (QDs) was prepared by anodization of Ti metal and successive ionic layer adsorption and reaction (SILAR) procedure. The tuning of the band gap of CdSSe was done with controlled composition of Cd, S, or Se during the SILAR. A ladder-like energy structure suitable for carrier transfer was attained with the photoanode electrode. The power conversion efficiency (PCE) of our solar cell fabricated with the regular array of $TiO_2$ NTs anchored with CdSSe/CdS or CdSe/CdS QDs [i.e., (CdSSe/CdS/$TiO_2NTs$) or (CdSe/CdS/$TiO_2NTs$)] was PCE = 3.49% and 2.81% under the illumination at 100 mW/$cm^2$, respectively. To protect the photocorrosion of our solar cell from the electrolyte and to suppress carrier recombination, ZnS was introduced onto CdSSe/CdS. The PCE of our solar cell with the structure of a photoanode electrode, (ZnS/CdSSe/CdS/$TiO_2$ NTs/Ti) was 4.67% under illumination at 100 mW/$cm^2$.

Luminescence Properties of InP/ZnS Quantum Dots depending on InP Core synthesis Temperature (InP 코어 합성온도에 따른 InP/ZnS의 코어/쉘 양자점의 발광특성)

  • Seo, Han Wook;Jeong, Da-Woon;Kim, Min Young;Hyun, Seoung Kyun;On, Ji Sun;Kim, Bum Sung
    • Journal of Powder Materials
    • /
    • v.24 no.4
    • /
    • pp.321-325
    • /
    • 2017
  • In this study, we investigate the optical properties of InP/ZnS core/shell quantum dots (QDs) by controlling the synthesis temperature of InP. The size of InP determined by the empirical formula tends to increase with temperature: the size of InP synthesized at $140^{\circ}C$ and $220^{\circ}C$ is 2.46 nm and 4.52 nm, respectively. However, the photoluminescence (PL) spectrum of InP is not observed because of the formation of defects on the InP surface. The growth of InP is observed during the deposition of the shell (ZnS) on the synthesized InP, which is ended up with green-red PL spectrum. We can adjust the PL spectrum and absorption spectrum of InP/ZnS by simply adjusting the core temperature. Thus, we conclude that there exists an optimum shell thickness for the QDs according to the size.

High-sensitivity Nitrogen Dioxide Gas Sensor Based on P3HT-doped Lead Sulfide Quantum Dots (P3HT가 도핑된 황화납 양자점 기반의 고감도 이산화질소 가스 센서)

  • JinBeom Kwon;YunTae Ha;SuJi Choe;Soobeen Baek;Daewoong Jung
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.169-173
    • /
    • 2023
  • With the increasing concern of global warming caused by greenhouse gases owing to the recent industrial development, there is a growing need for advanced technology to control these emissions. Among the various greenhouse gases, nitrogen dioxide (NO2) is a major contributor to global warming and is mainly released from sources, such as automobile exhaust and factories. Although semiconductor-type NO2 gas sensors, such as SnO2, have been extensively studied, they often require high operating temperatures and complicated manufacturing processes, while lacking selectivity, resulting in inaccurate measurements of NO2 gas levels. To address these limitations, a novel sensor using PbS quantum dots (QDs) was developed, which operates at low temperatures and exhibits high selectivity toward NO2 gas owing to its strong oxidation reaction. Furthermore, the use of P3HT conductive polymer improved the thin film quality, reactivity, and reaction rate of the sensor. The sensor demonstrated the ability to accurately measure NO2 gas concentrations ranging from 500 to 100 ppm, with a 5.1 times higher sensitivity, 1.5 times higher response rate, and 1.15 times higher recovery rate compared with sensors without P3HT.

Effect of Growth Methods of InAs Quntum Dots on Infrared Photodetector Properties (InAs 양자점 형성 방법이 양자점 적외선 소자 특성에 미치는 효과)

  • Seo, Dong-Bum;Hwang, Je-hwan;Oh, Boram;Noh, Sam Kyu;Kim, Jun Oh;Lee, Sang Jun;Kim, Eui-Tae
    • Korean Journal of Materials Research
    • /
    • v.28 no.11
    • /
    • pp.659-662
    • /
    • 2018
  • We report the properties of infrared photodetectors based on two kinds of quantum dots(QDs): i) 2.0 ML InAs QDs by the Stranski-Krastanov growth mode(SK QDs) and ii) sub-monolayer QDs by $4{\times}[0.3ML/1nm\;In_{0.15}Ga_{0.85}As]$ deposition(SML QDs). The QD infrared photodetector(QDIP) structure of $n^+-n^-(QDs)-n^+$ is epitaxially grown on GaAs (100) wafers using molecular-beam epitaxy. Both the bottom and top contact GaAs layers are Si doped at $2{\times}10^{18}/cm^3$. The QD layers are grown with Si doping of $2{\times}10^{17}/cm^3$ and capped by an $In_{0.15}Ga_{0.85}As$ layer at $495^{\circ}C$. The photoluminescence peak(1.24 eV) of the SML QDIP is blue-shifted with respect to that (1.04 eV) of SK QDIPs, suggesting that the electron ground state of SML QDIP is higher than that of the SK QDIP. As a result, the photoresponse regime(${\sim}9-14{\mu}m$) of the SML QDIP is longer than that (${\sim}6-12{\mu}m$) of the SK QDIP. The dark current of the SML QDIP is two orders of magnitude smaller value than that of the SK QDIP because of the inserted $Al_{0.08}Ga_{0.92}As$ layer.

Irreversible luminescence from graphene quantum dots prepared by the chain of oxidation and reduction process

  • Jang, Min-Ho;Ha, Hyun Dong;Lee, Eui-Sup;Kim, Yong-Hyun;Seo, Tae Seok;Cho, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.222.1-222.1
    • /
    • 2015
  • Recently, graphene quantum dots (GQDs) have attracted great attention due to various properties including cost-effectiveness of synthesis, low toxicity, and high photostability. Nevertheless, the origins of photoluminescence (PL) from GQDs are unclear because of extrinsic states of the impurities, disorder structures, and oxygen-functional groups. Therefore, to utilize GQDs in various applications, their optical properties generated from the extrinsic states should be understood. In this work, we have focused on the effect of oxygen-functional groups in PL of the GQDs. The GQDs with nanoscale and single layer are synthesized by employing graphite nanoparticles (GNPs) with 4 nm. The series of GQDs with different amount of oxygen-functional groups were prepared by the chain of chemical oxidation and reduction process. The fabrication of a series of graphene oxide QDs (GOQDs) with different amounts of oxygen-contents is first reported by a direct oxidation route of GNPs. In addition, for preparing a series of reduced GOQDs (rGOQDs), we employed the conventional chemical reduction to GOQDs solution and controlled the amount of reduction agents. The GOQDs and rGOQDs showed irreversible PL properties even though both routes have similar amount of oxyen-functional groups. In the case of a series of GOQDs, the PL spectrum was clearly redshifted into blue and green-yellowish color. On the other hand, the PL spectrum of rGOQDs did not change significantly. By various optical measurement such as the PL excitation, UV-vis absorbance, and time-resolved PL, we could verify that their PL mechanisms of GOQDs and rGOQDs are closely associated with different atomic structures formed by chemical oxidation and reduction. Our study provides an important insights for understanding the optical properties of GQDs affected by oxygen-functional groups. [1]

  • PDF