• 제목/요약/키워드: quantitative weighted bounds

검색결과 3건 처리시간 0.018초

QUANTITATIVE WEIGHTED BOUNDS FOR THE VECTOR-VALUED SINGULAR INTEGRAL OPERATORS WITH NONSMOOTH KERNELS

  • Hu, Guoen
    • 대한수학회보
    • /
    • 제55권6호
    • /
    • pp.1791-1809
    • /
    • 2018
  • Let T be the singular integral operator with nonsmooth kernel which was introduced by Duong and McIntosh, and $T_q(q{\in}(1,{\infty}))$ be the vector-valued operator defined by $T_qf(x)=({\sum}_{k=1}^{\infty}{\mid}T\;f_k(x){\mid}^q)^{1/q}$. In this paper, by proving certain weak type endpoint estimate of L log L type for the grand maximal operator of T, the author establishes some quantitative weighted bounds for $T_q$ and the corresponding vector-valued maximal singular integral operator.

A NOTE ON MULTILINEAR PSEUDO-DIFFERENTIAL OPERATORS AND ITERATED COMMUTATORS

  • Wen, Yongming;Wu, Huoxiong;Xue, Qingying
    • 대한수학회보
    • /
    • 제57권4호
    • /
    • pp.851-864
    • /
    • 2020
  • This paper gives a sparse domination for the iterated commutators of multilinear pseudo-differential operators with the symbol σ belonging to the Hörmander class, and establishes the quantitative bounds of the Bloom type estimates for such commutators. Moreover, the Cp estimates for the corresponding multilinear pseudo-differential operators are also obtained.