• Title/Summary/Keyword: quantitative reverse transcription polymerase chain reaction (Q-RT-PCR)

Search Result 60, Processing Time 0.022 seconds

Biocontrol of Peach Gummosis by Bacillus velezensis KTA01 and Its Antifungal Mechanism

  • Tae-An Kang;GyuDae Lee;Kihwan Kim;Dongyup Hahn;Jae-Ho Shin;Won-Chan Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.296-305
    • /
    • 2024
  • Peach tree gummosis is a botanical anomaly distinguished by the secretion of dark-brown gum from the shoots of peach trees, and Botryosphaeria dothidea has been identified as one of the fungal species responsible for its occurrence. In South Korea, approximately 80% of gummosis cases are linked to infections caused by B. dothidea. In this study, we isolated microbes from the soil surrounding peach trees exhibiting antifungal activity against B. dothidea. Subsequently, we identified several bacterial strains as potential candidates for a biocontrol agent. Among them, Bacillus velezensis KTA01 displayed the most robust antifungal activity and was therefore selected for further analysis. To investigate the antifungal mechanism of B. velezensis KTA01, we performed tests to assess cell wall degradation and siderophore production. Additionally, we conducted reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis based on whole-genome sequencing to confirm the presence of genes responsible for the biosynthesis of lipopeptide compounds, a well-known characteristic of Bacillus spp., and to compare gene expression levels. Moreover, we extracted lipopeptide compounds using methanol and subjected them to both antifungal activity testing and high-performance liquid chromatography (HPLC) analysis. The experimental findings presented in this study unequivocally demonstrate the promising potential of B. velezensis KTA01 as a biocontrol agent against B. dothidea KACC45481, the pathogen responsible for causing peach tree gummosis.

Expression and regulation of avian beta-defensin 8 protein in immune tissues and cell lines of chickens

  • Rengaraj, Deivendran;Truong, Anh Duc;Lillehoj, Hyun S.;Han, Jae Yong;Hong, Yeong Ho
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.9
    • /
    • pp.1516-1524
    • /
    • 2018
  • Objective: Defensins are a large family of antimicrobial peptides and components of the innate immune system that invoke an immediate immune response against harmful pathogens. Defensins are classified into alpha-, beta-, and theta-defensins. Avian species only possess beta-defensins (AvBDs), and approximately 14 AvBDs (AvBD1-AvBD14) have been identified in chickens to date. Although substantial information is available on the conservation and phylogenetics, limited information is available on the expression and regulation of AvBD8 in chicken immune tissues and cells. Methods: We examined AvBD8 protein expression in immune tissues of White Leghorn chickens (WL) by immunohistochemistry and quantitative reverse transcription-polymerase chain reaction (RT-qPCR). In addition, we examined AvBD8 expression in chicken T-, B-, macrophage-, and fibroblast-cell lines and its regulation in these cells after lipopolysaccharide (LPS) treatment by immunocytochemistry and RT-qPCR. Results: Our results showed that chicken AvBD8 protein was strongly expressed in the WL intestine and in macrophages. AvBD8 gene expression was highly upregulated in macrophages treated with different LPS concentrations compared with that in T- and B-cell lines in a time-independent manner. Moreover, chicken AvBD8 strongly interacted with other AvBDs and with other antimicrobial peptides as determined by bioinformatics. Conclusion: Our study provides the expression and regulation of chicken AvBD8 protein in immune tissues and cells, which play crucial role in the innate immunity.

Expression pattern of prohibitin, capping actin protein of muscle Z-line beta subunit and tektin-2 gene in Murrah buffalo sperm and its relationship with sperm motility

  • Xiong, Zhaocheng;Zhang, Haihang;Huang, Ben;Liu, Qingyou;Wang, Yingqun;Shi, Deshun;Li, Xiangping
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.11
    • /
    • pp.1729-1737
    • /
    • 2018
  • Objective: The aim of the current study is to investigate the relationship between prohibitin (PHB), capping actin protein of muscle Z-line beta subunit (CAPZB), and tektin-2 (TEKT2) and sperm motility in Murrah buffalo. Methods: We collected the high-motility and low-motility semen samples, testis, ovary, muscle, kidney, liver, brain and pituitary from Murrah buffalo, and analysed the expression of PHB, CAPZB, and TEKT2 in mRNA (message RNA) and protein level. Results: Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) result showed that the expression of PHB was higher and CAPZB, TEKT2 were specifically expressed in testis as compared to the other 6 tissues, and that in testis, the expression of TEKT2 was higher than that of CAPZB and PHB. Immunohistochemistry test revealed that all three genes were located on the convoluted seminiferous tubule and enriched in spermatogenic cells. Both qRT-PCR and Western Blot results showed that the expression levels of PHB, CAPZB, and TEKT2 were significantly lower in the low-motility semen group compared to the high-motility semen group (p<0.05). Conclusion: The expression levels of PHB, CAPZB, and TEKT2 in Murrah buffalo sperm have a high positive correlation with sperm motility. And the three genes may be potential molecular markers for the decline of buffalo sperm motility.

LINC01232 Promotes Gastric Cancer Proliferation through Interacting with EZH2 to Inhibit the Transcription of KLF2

  • Liu, Jing;Li, Zhen;Yu, Guohua;Wang, Ting;Qu, Guimei;Wang, Yunhui
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.10
    • /
    • pp.1358-1365
    • /
    • 2021
  • To clarify the role of long intergenic nonprotein-coding RNA 1232 (LINC01232) in the progression of gastric cancer and the potential mechanism, we analyzed the expression of LINC01232 in TCGA database using the GEPIA online tool, and the LINC01232 level in gastric cancer cell lines was detected by quantitative real time-polymerase chain reaction (qRT-PCR) as well. Cell proliferation assay, colony formation assay, transwell assay and tumor formation experiment in nude mice were conducted to observe the biological behavior changes of gastric cancer cells through the influence of LINC01232 knockdown. LncATLAS database and subcellular isolation assay were used for subcellular distribution of LINC01232 in gastric cancer cells. The interaction among LINC01232, zeste homolog 2 (EZH2) and kruppel-like factor 2 (KLF2) was clarified by RNA-protein interaction prediction (RPISeq), RNA immunoprecipitation (RIP), qRT-PCR and chromatin immunoprecipitation (ChIP) assay. Rescue experiments were further conducted to elucidate the biological function of LINC01232/KLF2 axis in the progression of gastric cancer. LINC01232 was upregulated in stomach adenocarcinoma (STAD) tissues and gastric cancer lines. LINC01232 knockdown inhibited the proliferative capacities of gastric cancer cells in vitro, and impaired in vivo tumorigenicity. LINC01232 was mainly distributed in the cell nucleus where it epigenetically repressed KLF2 expression via binding to the enhancer of EZH2, which was capable of binding to promoter regions of KLF2 to induce histone H3 lysine 27 trimethylation (H3K27me3). LINC01232 exerts oncogenic activities in gastric cancer via inhibition of KLF2, and therefore, the knockdown of KLF2 could reverse the regulatory effect of LINC01232 in the proliferative ability of gastric cancer cells.

Validation of exercise-response genes in skeletal muscle cells of Thoroughbred racing horses

  • Kim, Doh Hoon;Lee, Hyo Gun;Sp, Nipin;Kang, Dong Young;Jang, Kyoung-Jin;Lee, Hak Kyo;Cho, Byung-Wook;Yang, Young Mok
    • Animal Bioscience
    • /
    • v.34 no.1
    • /
    • pp.134-142
    • /
    • 2021
  • Objective: To understand the athletic characteristics of Thoroughbreds, high-throughput analysis has been conducted using horse muscle tissue. However, an in vitro system has been lacking for studying and validating genes from in silico data. The aim of this study is to validate genes from differentially expressed genes (DEGs) of our previous RNA-sequencing data in vitro. Also, we investigated the effects of exercise-induced stress including heat, oxidative, hypoxic and cortisol stress on horse skeletal muscle derived cells with the top six upregulated genes of DEGs. Methods: Enriched pathway analysis was conducted using the Database for Annotation, Visualization, and Integrated Discovery (DAVID) tool with upregulated genes in horse skeletal muscle tissue after exercise. Among the candidates, the top six genes were analysed through geneMANIA to investigate gene networks. Muscle cells derived from neonatal horse skeletal tissue were maintained and subjected to exercise-related stressors. Transcriptional changes in the top six genes followed by stressors were investigated using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Results: The inflammation response pathway was the most commonly upregulated pathway after horse exercise. Under non-cytotoxic conditions of exercise-related stressors, the transcriptional response of the top six genes was different among types of stress. Oxidative stress yielded the most similar expression pattern to DEGs. Conclusion: Our results indicate that transcriptional change after horse exercise in skeletal muscle tissue strongly relates to stress response. The qRT-PCR results showed that stressors contribute differently to the transcriptional regulation. These results would be valuable information to understand horse exercise in the stress aspect.

Inactivation of Human Norovirus GII. 4 on Oyster Crassostrea gigas by Electron Beam Irradiation (전자선 조사에 의한 신선굴(Crassostrea gigas) 중 휴먼노로바이러스 GII. 4의 저감화)

  • Kim, Ji Yoon;Jeon, Eun Bi;Choi, Man-Seok;Park, Shin Young
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.54 no.1
    • /
    • pp.16-22
    • /
    • 2021
  • This study investigated the reduction in human norovirus (HNV) GII. 4 count in pacific oyster Crassostrea gigas using electron beam irradiation. Infectious HNV GII. 4 was detected using RT-qPCR (real time reverse transcription-quantitative polymerase chain reaction) with PMA (propidium monoazide)/sarkosyl. At electron beam doses 1, 5, 7, and 10 kGy, the count of HNV GII. 4 was 2.74, 2.37, 2.06, and 1.55 log copies/μL (control, 3.01 log copy/μL), respectively, confirming that as the irradiation dose increased, norovirus count reduced significantly (P<0.05). After PMA/sarkosyl treatment, the counts further reduced at the same irradiation dose, and 10 kGy showed significant differences between the non-treated and PMA/sarkosyl-treated samples (P<0.05). The Ed (decimal reduction dose of electron beam) value based on the first-order kinetic model was 7.33 kGy (R2=0.98). No significant difference was observed in the pH values of the control (6.2) and electron beam-irradiated samples at all doses (6.1). For sensory evaluation, the non-treated sample scored the highest in all categories (5.25-6.17), while the samples treated with 10 kGy showed the lowest score (4.67-5.33), although without statistical significance (P>0.05). Overall, our results suggest that 7 kGy electron beam is sufficient for the non-thermal sterilization of oysters without causing significant changes in quality.

Differences in liver microRNA profiling in pigs with low and high feed efficiency

  • Miao, Yuanxin;Fu, Chuanke;Liao, Mingxing;Fang, Fang
    • Journal of Animal Science and Technology
    • /
    • v.64 no.2
    • /
    • pp.312-329
    • /
    • 2022
  • Feed cost is the main factor affecting the economic benefits of pig industry. Improving the feed efficiency (FE) can reduce the feed cost and improve the economic benefits of pig breeding enterprises. Liver is a complex metabolic organ which affects the distribution of nutrients and regulates the efficiency of energy conversion from nutrients to muscle or fat, thereby affecting feed efficiency. MicroRNAs (miRNAs) are small non-coding RNAs that can regulate feed efficiency through the modulation of gene expression at the post-transcriptional level. In this study, we analyzed miRNA profiling of liver tissues in High-FE and Low-FE pigs for the purpose of identifying key miRNAs related to feed efficiency. A total 212~221 annotated porcine miRNAs and 136~281 novel miRNAs were identified in the pig liver. Among them, 188 annotated miRNAs were co-expressed in High-FE and Low-FE pigs. The 14 miRNAs were significantly differentially expressed (DE) in the livers of high-FE pigs and low-FE pigs, of which 5 were downregulated and 9 were upregulated. Kyoto Encyclopedia of Genes and Genomes analysis of liver DE miRNAs in high-FE pigs and low-FE pigs indicated that the target genes of DE miRNAs were significantly enriched in insulin signaling pathway, Gonadotropin-releasing hormone signaling pathway, and mammalian target of rapamycin signaling pathway. To verify the reliability of sequencing results, 5 DE miRNAs were randomly selected for quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The qRT-PCR results of miRNAs were confirmed to be consistent with sequencing data. DE miRNA data indicated that liver-specific miRNAs synergistically acted with mRNAs to improve feed efficiency. The liver miRNAs expression analysis revealed the metabolic pathways by which the liver miRNAs regulate pig feed efficiency.

Increased interleukin-6 and TP53 levels in rotator cuff tendon repair patients with hypercholesterolemia

  • Jong Pil Yoon;Seung Gi Min;Jin-Hyun Choi;Hyun Joo Lee;Kyeong Hyeon Park;Sung Hyuk Yoon;Seong Soo Kim;Seok Won Chung;Hun-Min Kim;Dong Hyun Kim
    • Clinics in Shoulder and Elbow
    • /
    • v.25 no.4
    • /
    • pp.296-303
    • /
    • 2022
  • Background: A previous study reported that hyperlipidemia increases the incidence of tears in the rotator cuff tendon and affects healing after repair. The aim of our study was to compare the gene and protein expression of torn rotator cuff tendons in patients both with and without hypercholesterolemia. Methods: Thirty patients who provided rotator cuff tendon samples were classified into either a non-hypercholesterolemia group (n=19, serum total cholesterol [TC] <200 mg/dL) and hypercholesterolemia group (n=11, serum TC ≥240 mg/dL) based on their concentrations of serum TC. The expression of various genes of interest, including COL1A1, IGF1, IL-6, MMP2, MMP3, MMP9, MMP13, TNMD, and TP53, was analyzed by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). In addition, Western blot analysis was performed on the proteins encoded by interleukin (IL)-6 and TP53 that showed significantly different expression levels in real-time qRT-PCR. Results: Except for IGF1, the gene expression levels of IL-6, MMP2, MMP9, and TP53 were significantly higher in the hypercholesterolemic group than in the non-hypercholesterolemia group. Western blot analysis confirmed significantly higher protein levels of IL-6 and TP53 in the hypercholesterolemic group (p<0.05). Conclusions: We observed an increase in inflammatory cytokine and matrix metalloproteinase (MMP) levels in hypercholesterolemic patients with rotator cuff tears. Increased levels of IL-6 and TP53 were observed at both the mRNA and protein levels. We suggest that the overexpression of IL-6 and TP53 may be a specific feature in rotator cuff disease patients with hypercholesterolemia.

Transition nuclear protein 1 as a novel biomarker in patients with fertilization failure

  • Jamileh Sadat Mirsanei;Hadis Gholipour;Zahra Zandieh;Masoumeh Golestan Jahromi;Mojgan Javedani Masroor;Mehdi Mehdizadeh;Fatemehsadat Amjadi
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.50 no.3
    • /
    • pp.185-191
    • /
    • 2023
  • Objective: Although intracytoplasmic sperm injection (ICSI) is a way to deal with in vitro fertilization failure, 3% of couples still experience repeated fertilization failure after attempted ICSI, despite having sperm within normal parameters. These patients are a challenging group whose sperm cannot fertilize the egg during ICSI. Unfortunately, no test can predict the risk of fertilization failure. Phospholipase C zeta (PLCζ) and transition nuclear proteins (TNPs) are essential factors for chromatin packaging during sperm maturation. This study aimed to assess PLCζ1 and TNP1 expression in the sperm of patients with fertilization failure and the correlations among the DNA fragmentation index, PLCζ1 and TNP1 gene and protein expression, and the risk of fertilization failure. Methods: In this study, 12 infertile couples with low fertilization rates (<25%) and complete failure of fertilization in their prior ICSI cycles despite normal sperm parameters were chosen as the case group. Fifteen individuals who underwent ICSI for the first time served as the control group. After sperm analysis and DNA fragmentation assays, quantitative reverse-transcription polymerase chain reaction (qRT-PCR) and Western blot analyses were performed to compare the gene and protein expression of PLCζ and TNP1 in both groups. Results: DNA fragmentation was significantly higher in the fertilization failure group. The qRT-PCR and Western blot results demonstrated significantly lower PLCζ and TNP1 gene and protein expression in these patients than in controls. Conclusion: The present study showed that fertilization failure in normozoospermic men was probably due to deficient DNA packaging and expression of TNP1.

Amygdalin Reverses Macrophage PANoptosis Induced by Drug-Resistant Escherichia coli

  • Xue Yan;Liang Jin;Huifen Zhou;Haofang Wan;Haitong Wan;Jiehong Yang
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.10
    • /
    • pp.1281-1291
    • /
    • 2023
  • Infectious diseases caused by drug-resistant Escherichia coli (E. coli) pose a critical concern for medical institutions as they can lead to high morbidity and mortality rates. In this study, amygdalin exhibited anti-inflammatory and antioxidant activities, as well as other potentials. However, whether it could influence the drug-resistant E. coli-infected cells remained unanswered. Amygdalin was therefore tested in a cellular model in which human macrophages were exposed to resistant E. coli. Apoptosis was measured by flow cytometry and the lactate dehydrogenase (LDH) assay. Western immunoblotting and quantitative reverse-transcription polymerase chain reaction (qRT-PCR) were used to quantify interleukin-18 (IL-18), interleukin-1β (IL-1β), and interleukin-6 (IL-6). The production of reactive oxygen species (ROS) in macrophages was detected by ROS kit. The expression of pan-apoptotic proteins in macrophages was measured by qRT-PCR and Western immunoblotting. Drug-Resistant E. coli inhibited cell viability and enhanced apoptosis in the cellular model. In cells treated with amygdalin, this compound can inhibit cell apoptosis and reduce the expression of pro - inflammatory cytokines such as IL-1β, IL-18 and IL-6. Additionally, it decreases the production of PANoptosis proteins, Furthermore, amygdalin lowered the levels of reactive oxygen species induced by drug-resistant E. coli, in cells, demonstrating its antioxidant effects. Amygdalin, a drug with a protective role, alleviated cell damage caused by drug-resistant E. coli in human macrophages by inhibiting the PANoptosis signaling pathway.