• Title/Summary/Keyword: quantitative PCR (qPCR)

Search Result 378, Processing Time 0.027 seconds

MicroRNA-101 Inhibits Cell Proliferation, Invasion, and Promotes Apoptosis by Regulating Cyclooxygenase-2 in Hela Cervical Carcinoma Cells

  • Huang, Fei;Lin, Chen;Shi, Yong-Hua;Kuerban, Gulinar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.5915-5920
    • /
    • 2013
  • Aim: Although aberrant miRNA expression has been documented, altered miR-101 expression in cervical cancer and its carcinogenic effects and mechanisms remain unexplored. The aim of our study was to investigate the role of miR-101 alteration in cervical carcinogenesis. Methods: Expression of miR-101 was examined by quantitative real-time reverse transcriptase PCR (qRT-PCR) in Hela cells. After modulating miR-101 expression using miR-101 mimics, cell growth, apoptosis and proliferation, and migration were tested separately by MTT or flow cytometry and cell wound healing assay and protein expression was detected by qRT-PCR. The expression of COX-2 in Hela cell was also examined by immunohistochemical staining and the correlation with miR-101 expression was analysed. Results: The miR-101 demonstrated significantly low expression in Hela cell. When we transfected miR-101 mimics into Hela cells, the modulation of miR-101 expression remarkably influenced cell proliferation, cycling and apoptosis: 1) The expression of microRNA-101 tended to increase after transfection; 2) Overexpression of miR-101 was able to promote cell apoptosis, the apoptosis rate being markedly higher (97.6%) than that seen pre-transfection (12.2%) (P<0.05); 3) The miR-101 negatively regulates cell migration and invasion, scratch results being lower ($42.7um{\pm}2um$) than that observed pre-transfection ($181.4um{\pm}2um$); 4) miRNA-101 inhibits the proliferation of Hela cells as well as the level of COX-2 protein, which was negatively correlated with miR-101 expression. Conclusions: Overexpression of miR-101 has obvious inhibitory effects on cell proliferation, migration and invasion. Thus reduced miR-101 expression could participate in the development of cervical cancer at least partly through loss of inhibition of target gene COX-2, which probably occurs in a relative late phase of carcinogenesis. Our data suggest an important role of miR-101 in the molecular etiology of cancer and indicate potential application of miR-101 in cancer therapy.

Analysis of Archaeal Community in Autotrophic Perchlorate-degrading Enrichment Culture (독립영양 방식으로 퍼클로레이트를 분해하는 농화배양 내 고세균 군집 분석)

  • Kim, Young-Hwa;Do, Sanghyun;So, Hyunseung;Been, Junwon;Sung, Haechan;Ji, Sungchan;Son, Myunghwa;Ahn, Yeonghee
    • Journal of Life Science
    • /
    • v.27 no.4
    • /
    • pp.435-441
    • /
    • 2017
  • Perchlorate ($ClO_4^-$) is an emerging contaminant detected in soil, groundwater, and surface water. Previous study revealed bacterial community in the enrichment culture tdegraded perchlorate using elemental sulfur as an electron donor. Quantitative and qualitative molecular methods were employed in this study to investigate archaeal community in the enrichment culture. Real-time qPCR showed that archaeal 16S rRNA gene copy number in the culture was about 1.5% of bacterial 16S rRNA gene copy number. This suggested that less archaea were adapted to the environment of the enrichment culture and bacteria were dominant. DGGE banding pattern revealed that archaeal community profile of the enrichment culture was different from that of the activated sludge used as an inoculum for the enrichment culture. The most dominant DGGE band of the enrichment culture was affiliated with Methanococci. Further research is necessary to investigate metabolic role of the dominant archaeal population to better understand microbial community in the perchlorate-reducing enrichment culture.

MicroRNA-23a: A Novel Serum Based Diagnostic Biomarker for Lung Adenocarcinoma

  • Lee, Yu-Mi;Cho, Hyun-Jung;Lee, Soo-Young;Yun, Seong-Cheol;Kim, Ji-Hye;Lee, Shin-Yup;Kwon, Sun-Jung;Choi, Eu-Gene;Na, Moon-Jun;Kang, Jae-Ku;Son, Ji-Woong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.71 no.1
    • /
    • pp.8-14
    • /
    • 2011
  • Background: MicroRNAs (miRNAs) have demonstrated their potential as biomarkers for lung cancer diagnosis. In recent years, miRNAs have been found in body fluids such as serum, plasma, urine and saliva. Circulating miRNAs are highly stable and resistant to RNase activity along with, extreme pH and temperatures in serum and plasma. In this study, we investigated serum miRNA profiles that can be used as a diagnostic biomarker of non-small cell lung cancer (NSCLC). Methods: We compared the expression profile of miRNAs in the plasma of patients diagnosed with lung cancer using an miRNA microarray. The data from this assay were validated by quantitative real-time PCR (qRT-PCR). Results: Six miRNAs were overexpressed and three miRNAs were underexpressed in both tissue and serum from squamous cell carcinoma (SCC) patients. Sixteen miRNAs were overexpressed and twenty two miRNAs were underexpressed in both tissue and serum from adenocarcinoma (AC) patients. Of the four miRNAs chosen for qRT-PCR analysis, the expression of miR-23a was consistent with microarray results from AC patients. Receiver operating characteristic (ROC) curve analyses were done and revealed that the level of serum miR-23a was a potential marker for discriminating AC patients from chronic obstructive pulmonary disease (COPD) patients. Conclusion: Although a small number of patients were examined, the results from our study suggest that serum miR-23a can be used in the diagnosis of AC.

Expression patterns of TRα and CRABPII genes in Chinese cashmere goat skin during prenatal development

  • Zhong, Tao;Zhao, Wei;Zhou, Zhongqiang;Li, Li;Wang, Linjie;Li, Hua;Zhang, Hongping
    • Journal of Animal Science and Technology
    • /
    • v.57 no.8
    • /
    • pp.28.1-28.7
    • /
    • 2015
  • Background: The physiologic characteristics of the cashmere trait and many of the differentially expressed genes relevant to hair cycling have been extensively studied, whereas genes involved in the prenatal development of hair follicles have been poorly investigated in cashmere goats. The aim of this study, therefore, was to quantify the time-course changes in the expressions of $TR{\alpha}$ and CRABPII genes in the fetal skin of Chinese cashmere goats at the multiple embryonic days (E70, E75, E80, E90, E100, E120 and E130) using real-time quantitative PCR (RT-qPCR). Results: RT-qPCR showed that $TR{\alpha}$ was expressed at E70 with relatively high level and then slightly decreased (E75, E80, and E90). The highest expression of $TR{\alpha}$ mRNA was revealed at E130 (P > 0.05). The expression pattern of CRABPII mRNA showed an 'up-down-up' trend, which revealed a significantly highest expression at E75 (P < 0.05) and was down-regulated during E80 to E120 (P < 0.05) and mildly increased at E130, subsequently. Conclusion: This study demonstrated that $TR{\alpha}$ and CRABPII genes expressed in different levels during prenatal development of cashmere. The present study will be helpful to provide the comprehensive understanding of $TR{\alpha}$ and CRABPII genes expressions during cashmere formation and lay the ground for further studies on their roles in regulation of cashmere growth in goats.

Effects of Gintonin-enriched fraction on the gene expression of six lysophosphatidic receptor subtypes

  • Lee, Rami;Lee, Byung-Hwan;Choi, Sun-Hye;Cho, Yeon-Jin;Cho, Han-Sung;Kim, Hyoung-Chun;Rhim, Hyewhon;Cho, Ik-Hyun;Rhee, Man Hee;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • v.45 no.5
    • /
    • pp.583-590
    • /
    • 2021
  • Background: Gintonin, isolated from ginseng, acts as a ginseng-derived lysophosphatidic acid (LPA) receptor ligand and elicits the [Ca2+]i transient through six LPA receptor subtypes (LPARSs). However, the long-term effects of gintonin-enriched fraction (GEF) on the gene expression of six LPARSs remain unknown. We examined changes in the gene expression of six LPA receptors in the mouse whole brain, heart, lungs, liver, kidneys, spleen, small intestine, colon, and testis after long-term oral GEF administration. Methods: C57BL/6 mice were divided into two groups: control vehicle and GEF (100 mg/kg, p.o.). After 21-day saline or GEF treatment, total RNA was extracted from nine mouse organs. Quantitative-real-time PCR (qRT-PCR) and western blot were performed to quantify changes in the gene and protein expression of the six LPARSs, respectively. Results: qRT-PCR analysis before GEF treatment revealed that the LPA6 RS was predominant in all organs except the small intestine. The LPA2 RS was most abundant in the small intestine. Long-term GEF administration differentially regulated the six LPARSs. Upon GEF treatment, the LPA6 RS significantly increased in the liver, small intestine, colon, and testis but decreased in the whole brain, heart, lungs, and kidneys. Western blot analysis of the LPA6 RS confirmed the differential effects of GEF on LPA6 receptor protein levels in the whole brain, liver, small intestine, and testis. Conclusion: The LPA6 receptor was predominantly expressed in all nine organs examined; long-term oral GEF administration differentially regulated LPA3, LPA4, and LPA6 receptors in the whole brain, heart, lungs, liver, kidneys, small intestine, and testis.

Modulation of antioxidant defense system in the brackish water flea Diaphanosoma celebensis exposed to bisphenol A (비스페놀 A에 대한 기수산 물벼룩의 항산화 시스템의 변화)

  • Yoo, Jewon;Cha, Jooseon;Kim, Hyeri;Pyo, Jinwoo;Lee, Young-Mi
    • Korean Journal of Environmental Biology
    • /
    • v.37 no.1
    • /
    • pp.72-81
    • /
    • 2019
  • Bisphenol A (BPA), a representative endocrine disrupting chemicals, has adverse effects on growth, development and reproduction in aquatic organisms. The object of this study was to investigate the modulation of antioxidant enzyme-coding genes using quantitative real time RT-PCR (qRT-PCR), enzyme activity and total protein content, to understand oxidative stress responses after exposure to BPA for 48 h in brackish water flea Diaphanosoma celebensis. The BPA ($3mg\;L^{-1}$) significantly upregulated the expression of Cu/Zn-SOD, Mn-SOD, and catalase (CAT) mRNA. Three GST isoforms (GST-kappa, GST-mu, and GST-theta) mRNA levels significantly increased at the rate of $0.12mg\;L^{-1}$ of BPA. In particular, GST-mu showed the highest expression level, indicating its key role in antioxidant response to BPA. SOD activity was induced with a concentration-dependent manner, and total protein contents was reduced. These findings indicate that BPA can induce oxidative stress in this species, and these antioxidants may be involved in cellular protection against BPA exposure. This study will provide a better understanding of molecular mode of action of BPA toxicity in aquatic organisms.

Roles of miR-128 in Myogenic Differentiation and Insulin Signaling in Rat L6 Myoblasts (쥐L6 근원세포에서 miR-128의 근육세포 분화와 인슐린신호에서의 역할)

  • Oh, Myung-Ju;Kim, So-Hyeon;Kim, Ji-Hyun;Jhun, Byung H.
    • Journal of Life Science
    • /
    • v.30 no.9
    • /
    • pp.772-782
    • /
    • 2020
  • Skeletal muscle differentiation or myogenesis is important to maintain muscle mass and metabolic homeostasis. Muscle-specific microRNAs (miRNAs) are known to play a critical role in skeletal myogenic differentiation. In this study, we examined the expression profiling of miRNAs during myogenic differentiation in rat L6 myoblasts using rat miRNA microarrays. We identified the upregulated expression of miR-128 as well as several well-known myogenic miRNAs, including miR-1, miR-133b, and miR-206. We additionally confirmed the increased expression of miR-128 observed on microarray through quantitative real-time PCR (qRT-PCR), which showed similarly upregulated expression of both primary miR-128 and mature miR-128, consistent with the microarray findings. Furthermore, transfection of miR-128 into rat L6 myoblasts induced gene expression of myogenic markers such as muscle creatine kinase (MCK), myogenin, and myosin heavy chain (MHC). Protein expression of MHC was increased as well. Inhibition of miR-128 by inhibitory peptide nucleic acids (PNAs) blocked the expression of those myogenic markers. In addition, the transfection of miR-128 into rat L6 myoblasts enhanced the phosphorylation of Erk and Akt proteins stimulated by insulin, while simultaneously reversing the inhibited phosphorylation of Erk and Akt due to insulin resistance. These findings suggest that miR-128 may play important roles in myogenic differentiation and insulin signaling.

Validation of Reference Genes for Quantifying Changes in Physiological Gene Expression in Apple Tree under Cold Stress and Virus Infection (저온과 바이러스 감염에 노출된 사과나무의 생리적 유전자 정량 측정용 유전자들의 발현 분석 및 검증)

  • Yoon, Ju-Yeon;Jeong, Jae-Hoon;Choi, Seung-Kook
    • Research in Plant Disease
    • /
    • v.26 no.3
    • /
    • pp.144-158
    • /
    • 2020
  • Quantitative reverse transcription PCR is used for gene expression analysis as the accurate and sensitive method. To analyze quantification of gene expression changes in apple plants, 10 housekeeping genes (ACT, CKL, EF-1α, GAPDH, MDH, PDI, THFs, UBC, UBC10, and WD40) were evaluated for their stability of expression during infection by Apple stem grooving virus (ASGV) or in cold-stress apple plant buds. Five reference-gene validation programs were used to establish the order of the most stable genes for ASGV as CKL>THFs>GAPDH>ACT, and the least stable genes WD40CKL>UBC10, and the least stable genes were ACT

Expression profiles of circular RNAs in sheep skeletal muscle

  • Cao, Yang;You, Shuang;Yao, Yang;Liu, Zhi-Jin;Hazi, Wureli;Li, Cun-Yuan;Zhang, Xiang-Yu;Hou, Xiao-Xu;Wei, Jun-Chang;Li, Xiao-Yue;Wang, Da-Wei;Chen, Chuang-Fu;Zhang, Yun-Feng;Ni, Wei;Hu, Sheng-Wei
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.10
    • /
    • pp.1550-1557
    • /
    • 2018
  • Objective: Circular RNAs (circRNAs) are a newfound class of non-coding RNA in animals and plants. Recent studies have revealed that circRNAs play important roles in cell proliferation, differentiation, autophagy and apoptosis during development. However, there are few reports about muscle development-related circRNAs in livestock. Methods: RNA sequencing analysis was employed to identify and annotate circRNAs from longissimus dorsi of sheep. Reverse transcription followed by real-time quantitative (q) polymerase chain reaction (PCR) analysis verified the presence of these circRNAs. Targetscan7.0 and miRanda were used to analyse the interaction of circRNA-microRNA (miRNA). To investigate the function of circRNAs, an experiment was conducted to perform enrichment analysis hosting genes of circRNAs using gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathways. Results: About 75.5 million sequences were obtained from RNA libraries of sheep skeletal muscle. These sequences were mapped to 729 genes in the sheep reference genome. We identified 886 circRNAs, including numerous circular intronic RNAs and exonic circRNAs. Reverse transcription PCR (RT-PCR) and DNA sequencing analysis confirmed the presence of several circRNAs. Real-Time RT-PCR analysis exhibited resistance of sheep circRNAs to RNase R digestion. We found that many circRNAs interacted with muscle-specific miRNAs involved in growth and development of muscle, especially circ776. The GO and KEGG enrichment analysis showed that hosting genes of circRNAs was involved in muscle cell development and signaling pathway. Conclusion: The study provides comprehensive expression profiles of circRNAs in sheep skeletal muscle. Our study offers a large number of circRNAs to facilitate a better understanding of their roles in muscle growth. Meanwhile, we suggested that circ776 could be analyzed in future study.

Quantitative Analysis of Milk-Derived microRNAs and Microbiota during the Manufacturing and Ripening of Soft Cheese

  • Oh, Sangnam;Park, Mi-Ri;Ryu, Sangdon;Maburutse, Brighton E.;Kim, Ji-Uk;Kim, Younghoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.9
    • /
    • pp.1566-1575
    • /
    • 2017
  • MicroRNAs (miRNAs) are abundant in bovine milk and milk derived from other livestock, and they have functional roles in infants and in the secretion process of mammary glands. However, few studies have evaluated miRNAs in dairy processes, such as during cheese making and ripening. Thus, we investigated the characteristics of milk-derived miRNAs during the manufacturing and ripening of Camembert cheese as well as the microbiota present using the quantitative reverse transcription polymer chain reaction (RT-qPCR) and 16S rRNA pyrosequencing, respectively. Pyrosequencing showed that the cheese microbiota changed dramatically during cheese processing, including during the pasteurization, starter culture, and ripening stages. Our results indicated that the RNA contents per $200mg/200{\mu}l$ of the sample increased significantly during cheese-making and ripening. The inner cheese fractions had higher RNA contents than the surfaces after 12 and 22 days of ripening in a time-dependent manner (21.9 and 13.2 times higher in the inner and surface fractions than raw milk, respectively). We performed a comparative analysis of the miRNAs in each fraction by RT-qPCR. Large amounts of miRNAs (miR-93, miR-106a, miR-130, miR-155, miR-181a, and miR-223) correlated with immune responses and mammary glands were present in aged cheese, with the exception of miR-223, which was not present on the surface. Considerable amounts of miRNAs were also detected in whey, which is usually disposed of during the cheese-making process. Unexpectedly, there were no significant correlations between immune-related miRNAs and the microbial populations during cheese processing. Taken together, these results show that various functional miRNAs are present in cheese during its manufacture and that they are dramatically increased in amount in ripened Camembert cheese, with differences according to depth.