• Title/Summary/Keyword: quality prediction

Search Result 2,081, Processing Time 0.026 seconds

Development of an Eating Habit Checklist for Screening Elementary School Children at High Risk of Energy Overintake (초등학생의 에너지 과잉섭취 위험 진단을 위한 식습관평가표 개발)

  • Yon, Mi-Yong;Hyun, Tai-Sun
    • Journal of Nutrition and Health
    • /
    • v.41 no.5
    • /
    • pp.414-427
    • /
    • 2008
  • The purpose of the study was to develop an eating habit checklist for screening elementary school children at high risk of energy overintake. Dietary habits, food intake, anthropometric data were collected from 142 children (80 boys and 62 girls) in the 4th to 6th grades of elementary schools. Energy intake, fat intake, and percentage of Estimated Energy Requirement (%EER) were used as indices to detect the risk of energy overintake of the children. Pearson correlation coefficients were calculated between dietary habit scores and energy overintake indices in order to select questions included in the checklist. TV watching during the meal, meal speed, meal amount, overintake frequency, eatingout frequency, snack frequency, frequency of eating Ramyun or fast foods showed significant correlations with energy overintake indices. Stepwise regression analysis was performed to give each item a different weight by prediction strength. To determine the cut-off point of the test score, sensitivity, specificity, and positive predictive values were calculated. The 7-item checklist with test results from 0 to 13 points was developed, and those with equal or higher than 5 points were diagnosed as a risk group of energy overintake. Among our subjects 13.4% was diagnosed as the risk group. Mean energy intake of the subjects in the risk group and the normal group were 2,650 kcal and 1,640 kcal, respectively. However, there were no significant differences of Index of Nutritional Quality (INQ) of the other nutrients except eating fiber between the risk group and the normal group. This checklist will provide a useful screening tool to identify children at high risk of energy overintake.

Prediction Model of Exercise Behaviors in Patients with Arthritis (by Pender's revised Health Promotion Model) (관절염 환자의 운동행위 예측모형 (Pender의 재개정된 건강증진 모형에 의한))

  • Lim, Nan-Young;Suh, Gil-Hee
    • Journal of muscle and joint health
    • /
    • v.8 no.1
    • /
    • pp.122-140
    • /
    • 2001
  • The aims of this study were to understand and to predict the determinent factors affecting the exercise behaviors and physical fitness by testing the Pender's revised health promotion model, and to help the patients with rheumatoid arthritis and osteoarthritis perform the continous exercise program, and to help them maximize the physical effect such as muscle strength, endurance, and functional status and mental effects including self efficacy and quality of life, and improve the physical and mental well being, and to provide a basis for the nursing intervention strategies. Of the selected variables in this study, the endogenous variables included the physical fitness, exercise score, exercise participation, perceived benefits of action, perceived barriers of action to exercise, activity-related affect(depression) and perceived self-efficacy, interpersonal influences(family support), situational factors(duration of arthritis, fatigue) and the exogenous variables included personal sociocultural factor(education level), personal biologic factor(body mass index), personal psychologic factor(perceived health status) and prior related behavior factors(previous participation in exercise, life-style). We analyzed the clinical records of 208 patients with rheumatoid arthritis and degenerative arthritis who visited the outpatient clinics at H university hospital in Seoul. Data were composed of self reported qustionnaire and good of fitness score which were obtained by padalling the ergometer of bicycle for 9 minutes. SPSS Win 8.0 and Window LISREL 8.12a were used for statistical analysis. Of 75 hypothetical paths that influence on physical fitness, exercise participation, exercise score, perceived benefits of action, perceived barriers of action to exercise, activity-related affect(depression) and perceived self-efficacy, interpersonal influences(family support), situational factors(duration of arthritis, fatigue), 40 were supported. The physical fitness was directly influenced by life-style, perceived health status, education level, family support, fatigue, which explained 12% of physical fitness. The exercise participation were directly influenced by life-style, education level, past exercise behavior, perceived benefits of action, perceived barriers of action, depression and duration of arthritis, which explained 47% of exercise participation. Exercise score were directly affected by perceived self efficacy. BMI, life-style, past exercise behavior, perceived benefits of action, family support, perceived health status. perceived barriers of action, and fatigue, which explained 70%. Perceived benefits of action was directly influenced by BMI, life-style, which explained 39%. Perceived barriers of action were directly influeced by past exercise behavior, perceived health status, which explained 7%. Perceived self efficacy were directly influeced by level of education, perceived health status, life-style, which explained 57%. Depression were directly influeced by past exercise behavior, BMI, life-style, which explained 27%. Family support were directly influeced by life-style, perceived health status, which explained 29%. Fatigue were directly influeced by BMI, life-style, perceived health status. which explained 41%. Duration of arthritis were directly influeced by life-style, past exercise behavior, BMI, which explained 6%. In conclusion, important variables for physical fitness were life-style, and variable affecting exercise participation were life-style. Perceived self-efficacy of exercise was a significant predictor of exercise score. BMI, Life-style, perceived benefits of action, family support, past exercise behavior showed direct effects on perceived self-efficacy. Therefore, disease related factor should be minimized for physical performance and well being in nursing intervention for patients with rheumatoid arthritis, and plans to promote and continue exercise should be seeked to reduce disability. In addition, Exercise program should be planned and performed by the exact evaluation of exercise according to the ability of the patients and the contents to improve the importance of exercise and self efficacy in self control program, dedicated educational program should be involved. This study suggest that the methods to reduce the disease related factors, the importance of daily life-style, recognition of benefit of exercise, and educational program to promote self efficacy should be considered in the exercise behavior promotion and nursing intervention for continous performance. The significance of this study is also thought to provide patients with chronic arthritis the specific data for maximal physical and mental well being through exercise, chronic therapeutic procedure, daily adaptation and confrontation in nursing intervention.

  • PDF

Korean Ocean Forecasting System: Present and Future (한국의 해양예측, 오늘과 내일)

  • Kim, Young Ho;Choi, Byoung-Ju;Lee, Jun-Soo;Byun, Do-Seong;Kang, Kiryong;Kim, Young-Gyu;Cho, Yang-Ki
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.18 no.2
    • /
    • pp.89-103
    • /
    • 2013
  • National demands for the ocean forecasting system have been increased to support economic activity and national safety including search and rescue, maritime defense, fisheries, port management, leisure activities and marine transportation. Further, the ocean forecasting has been regarded as one of the key components to improve the weather and climate forecasting. Due to the national demands as well as improvement of the technology, the ocean forecasting systems have been established among advanced countries since late 1990. Global Ocean Data Assimilation Experiment (GODAE) significantly contributed to the achievement and world-wide spreading of ocean forecasting systems. Four stages of GODAE were summarized. Goal, vision, development history and research on ocean forecasting system of the advanced countries such as USA, France, UK, Italy, Norway, Australia, Japan, China, who operationally use the systems, were examined and compared. Strategies of the successfully established ocean forecasting systems can be summarized as follows: First, concentration of the national ability is required to establish successful operational ocean forecasting system. Second, newly developed technologies were shared with other countries and they achieved mutual and cooperative development through the international program. Third, each participating organization has devoted to its own task according to its role. In Korean society, demands on the ocean forecasting system have been also extended. Present status on development of the ocean forecasting system and long-term plan of KMA (Korea Meteorological Administration), KHOA (Korea Hydrographic and Oceanographic Administration), NFRDI (National Fisheries Research & Development Institute), ADD (Agency for Defense Development) were surveyed. From the history of the pre-established systems in other countries, the cooperation among the relevant Korean organizations is essential to establish the accurate and successful ocean forecasting system, and they can form a consortium. Through the cooperation, we can (1) set up high-quality ocean forecasting models and systems, (2) efficiently invest and distribute financial resources without duplicate investment, (3) overcome lack of manpower for the development. At present stage, it is strongly requested to concentrate national resources on developing a large-scale operational Korea Ocean Forecasting System which can produce open boundary and initial conditions for local ocean and climate forecasting models. Once the system is established, each organization can modify the system for its own specialized purpose. In addition, we can contribute to the international ocean prediction community.

Determination of Grades and Design Strengths of Machine Graded Lumber in Korea (국내 기계등급구조재의 등급구분체계 및 기준설계값 결정방법 연구)

  • Hong, Jung-Pyo;Lee, Jun-Jae;Park, Moon-Jae;Yeo, Hwanmyeong;Pang, Sung-Jun;Kim, Chul-Ki;Oh, Jung-Kwon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.4
    • /
    • pp.446-455
    • /
    • 2015
  • Based on comparative studies on standards and grading procedures of machine graded lumber in Korea and other countries, this study proposed a procedure of determining the grade classification and design strengths of domestic machine graded lumber. Differences between machine stress rated lumber and E-rated laminations were detailed in order to clarify the need for the procedure improvement. To this improvement the use of average MOE requirement for grading was introduced instead of the fixed minimum MOE requirement which is currently used in the Korean standards. It was found that the fixed minimum MOE requirement method was easier for an inspector to grade but, less efficient as a strength predictor than the average MOE requirement method. The advantage of average MOE requirement method is statistically MOR-MOE regression-based MOR prediction and highly efficient in quality control though it requires a computer-aided operation system in an initial setup. A major weakness of the current Korean grading system was found that different strength characteristics depending on wood species were not reflected on the grade classification and the tabulated allowable design stress. The proposed procedures were developed taking advantages of respective merits of both methods and based on MOR-MOE regression analysis. Through this procedure, the grades of machine stress rated lumber should be revised to become interchangeable with E-rated lamination, which would be beneficial to the cost competitiveness of domestic machine graded lumber and glued laminated timber industry.

Effect of Package Size and Pasteurization Temperature on the Quality of Sous Vide Processed Spinach (Sous Vide 가공 시금치의 품질에 미치는 포장단위 및 살균온도의 영향)

  • 장재덕;김기태;이동선
    • Food Science and Preservation
    • /
    • v.11 no.2
    • /
    • pp.195-200
    • /
    • 2004
  • Microbial lethal value and nutrient retention of sous vide processed spinach were evaluated with mathematical model prediction and experimental trial for different package sizes and pasteurization temperatures. The package size covers 500 g, 1 kg and 2 kg, while the pasteurization temperature includes 80, 90 and 97$^{\circ}C$. The basic process scheme consists of filling blanched spinach into barrier plastic film pouch, sealing under vacuum, pasteurization in hot water with over pressure and final cooling to 3$^{\circ}C$. Pasteurization condition was designed based on attainment of 6 decimal inactivation of Listeria monocytogenes at geometric center of the pouch package by heating cycle, which was determined by general method. Heat penetration property of the package and thermal destruction kinetics were combined to estimate the retention of ascorbic acid and chlorophyll. Smaller packages with shorter pasteurization time gave better nutrient retention, physical and chemical qualities. Larger package size was estimated and confirmed experimentally to give higher pasteurization value at center, lower ascorbic acid and chlorophyll contents caused by longer heat process time. Lower pasteurization temperature with longer process time was predicted to give lower pasteurization value at center and lower ascorbic acid, while chlorophyll content was affected little by the temperature. Experimental trial showed better retention of ascorbic acid and chlorophyll for smaller package and higher pasteurization temperature with shorter heating time. The beneficial effect of smaller package and higher pasteurization temperature was also observed in texture, color retention and drip production.

Variation of Inflow Density Currents with Different Flood Magnitude in Daecheong Reservoir (홍수 규모별 대청호에 유입하는 하천 밀도류의 특성 변화)

  • Yoon, Sung-Wan;Chung, Se-Woong;Choi, Jung-Kyu
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.12
    • /
    • pp.1219-1230
    • /
    • 2008
  • Stream inflows induced by flood runoffs have a higher density than the ambient reservoir water because of a lower water temperature and elevated suspended sediment(SS) concentration. As the propagation of density currents that formed by density difference between inflow and ambient water affects reservoir water quality and ecosystem, an understanding of reservoir density current is essential for an optimization of filed monitoring, analysis and forecast of SS and nutrient transport, and their proper management and control. This study was aimed to quantify the characteristics of inflow density current including plunge depth($d_p$) and distance($X_p$), separation depth($d_s$), interflow thickness($h_i$), arrival time to dam($t_a$), reduction ratio(${\beta}$) of SS contained stream inflow for different flood magnitude in Daecheong Reservoir with a validated two-dimensional(2D) numerical model. 10 different flood scenarios corresponding to inflow densimetric Froude number($Fr_i$) range from 0.920 to 9.205 were set up based on the hydrograph obtained from June 13 to July 3, 2004. A fully developed stratification condition was assumed as an initial water temperature profile. Higher $Fr_i$(inertia-to-buoyancy ratio) resulted in a greater $d_p,\;X_p,\;d_s,\;h_i$, and faster propagation of interflow, while the effect of reservoir geometry on these characteristics was significant. The Hebbert equation that estimates $d_p$ assuming steady-state flow condition with triangular cross section substantially over-estimated the $d_p$ because it does not consider the spatial variation of reservoir geometry and water surface changes during flood events. The ${\beta}$ values between inflow and dam sites were decreased as $Fr_i$ increased, but reversed after $Fr_i$>9.0 because of turbulent mixing effect. The results provides a practical and effective prediction measures for reservoir operators to first capture the behavior of turbidity inflow.

Recent Progress in Air-Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2014 (설비공학 분야의 최근 연구 동향: 2014년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.7
    • /
    • pp.380-394
    • /
    • 2015
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2014. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of heat and mass transfer, cooling and heating, and air-conditioning, the flow inside building rooms, and smoke control on fire. Research issues dealing with duct and pipe were reduced, but flows inside building rooms, and smoke controls were newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for thermal contact resistance measurement of metal interface, a fan coil with an oval-type heat exchanger, fouling characteristics of plate heat exchangers, effect of rib pitch in a two wall divergent channel, semi-empirical analysis in vertical mesoscale tubes, an integrated drying machine, microscale surface wrinkles, brazed plate heat exchangers, numerical analysis in printed circuit heat exchanger. In the area of pool boiling and condensing, non-uniform air flow, PCM applied thermal storage wall system, a new wavy cylindrical shape capsule, and HFC32/HFC152a mixtures on enhanced tubes, were actively studied. In the area of industrial heat exchangers, researches on solar water storage tank, effective design on the inserting part of refrigerator door gasket, impact of different boundary conditions in generating g-function, various construction of SCW type ground heat exchanger and a heat pump for closed cooling water heat recovery were performed. (3) In the field of refrigeration, various studies were carried out in the categories of refrigeration cycle, alternative refrigeration and modelling and controls including energy recoveries from industrial boilers and vehicles, improvement of dehumidification systems, novel defrost systems, fault diagnosis and optimum controls for heat pump systems. It is particularly notable that a substantial number of studies were dedicated for the development of air-conditioning and power recovery systems for electric vehicles in this year. (4) In building mechanical system research fields, seventeen studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, and renewable energies, piping in the buildings. Proposed designs, performance performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the evaluation of work noise in tunnel construction and the simulation and development of a light-shelf system. The subjects of building energy were worked on the energy saving of office building applied with window blind and phase change material(PCM), a method of existing building energy simulation using energy audit data, the estimation of thermal consumption unit of apartment building and its case studies, dynamic window performance, a writing method of energy consumption report and energy estimation of apartment building using district heating system. The remained studies were related to the improvement of architectural engineering education system for plant engineering industry, estimating cooling and heating degree days for variable base temperature, a prediction method of underground temperature, the comfort control algorithm of car air conditioner, the smoke control performance evaluation of high-rise building, evaluation of thermal energy systems of bio safety laboratory and a development of measuring device of solar heat gain coefficient of fenestration system.

A STUDY ON THE MEASUREMENT OF THE IMPLANT STABILITY USING RESONANCE FREQUENCY ANALYSIS (공진 주파수 분석법에 의한 임플랜트의 안정성 측정에 관한 연구)

  • Park Cheol;Lim Ju-Hwan;Cho In-Ho;Lim Heon-Song
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.2
    • /
    • pp.182-206
    • /
    • 2003
  • Statement of problem : Successful osseointegration of endosseous threaded implants is dependent on many factors. These may include the surface characteristics and gross geometry of implants, the quality and quantity of bone where implants are placed, and the magnitude and direction of stress in functional occlusion. Therefore clinical quantitative measurement of primary stability at placement and functional state of implant may play a role in prediction of possible clinical symptoms and the renovation of implant geometry, types and surface characteristic according to each patients conditions. Ultimately, it may increase success rate of implants. Purpose : Many available non-invasive techniques used for the clinical measurement of implant stability and osseointegration include percussion, radiography, the $Periotest^{(R)}$, Dental Fine $Tester^{(R)}$ and so on. There is, however, relatively little research undertaken to standardize quantitative measurement of stability of implant and osseointegration due to the various clinical applications performed by each individual operator. Therefore, in order to develop non-invasive experimental method to measure stability of implant quantitatively, the resonance frequency analyzer to measure the natural frequency of specific substance was developed in the procedure of this study. Material & method : To test the stability of the resonance frequency analyzer developed in this study, following methods and materials were used : 1) In-vitro study: the implant was placed in both epoxy resin of which physical properties are similar to the bone stiffness of human and fresh cow rib bone specimen. Then the resonance frequency values of them were measured and analyzed. In an attempt to test the reliability of the data gathered with the resonance frequency analyzer, comparative analysis with the data from the Periotest was conducted. 2) In-vivo study: the implants were inserted into the tibiae of 10 New Zealand rabbits and the resonance frequency value of them with connected abutments at healing time are measured immediately after insertion and gauged every 4 weeks for 16 weeks. Results : Results from these studies were such as follows : The same length implants placed in Hot Melt showed the repetitive resonance frequency values. As the length of abutment increased, the resonance frequency value changed significantly (p<0.01). As the thickness of transducer increased in order of 0.5, 1.0 and 2.0 mm, the resonance frequency value significantly increased (p<0.05). The implants placed in PL-2 and epoxy resin with different exposure degree resulted in the increase of resonance frequency value as the exposure degree of implants and the length of abutment decreased. In comparative experiment based on physical properties, as the thickness of transducer increased, the resonance frequency value increased significantly(p<0.01). As the stiffness of substances where implants were placed increased, and the effective length of implants decreased, the resonance frequencies value increased significantly (p<0.05). In the experiment with cow rib bone specimen, the increase of the length of abutment resulted in significant difference between the results from resonance frequency analyzer and the $Periotest^{(R)}$. There was no difference with significant meaning in the comparison based on the direction of measurement between the resonance frequency value and the $Periotest^{(R)}$ value (p<0.05). In-vivo experiment resulted in repetitive patternes of resonance frequency. As the time elapsed, the resonance frequency value increased significantly with the exception of 4th and 8th week (p<0.05). Conclusion : The development of resonance frequency analyzer is an attempt to standardize the quantitative measurement of stability of implant and osseointegration and compensate for the reliability of data from other non-invasive measuring devices It is considered that further research is needed to improve the efficiency of clinical application of resonance frequency analyzer. In addition, further investigation is warranted on the standardized quantitative analysis of the stability of implant.

Development of a TBM Advance Rate Model and Its Field Application Based on Full-Scale Shield TBM Tunneling Tests in 70 MPa of Artificial Rock Mass (70 MPa급 인공암반 내 실대형 쉴드TBM 굴진실험을 통한 굴진율 모델 및 활용방안 제안)

  • Kim, Jungjoo;Kim, Kyoungyul;Ryu, Heehwan;Hwan, Jung Ju;Hong, Sungyun;Jo, Seonah;Bae, Dusan
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.3
    • /
    • pp.305-313
    • /
    • 2020
  • The use of cable tunnels for electric power transmission as well as their construction in difficult conditions such as in subsea terrains and large overburden areas has increased. So, in order to efficiently operate the small diameter shield TBM (Tunnel Boring Machine), the estimation of advance rate and development of a design model is necessary. However, due to limited scope of survey and face mapping, it is very difficult to match the rock mass characteristics and TBM operational data in order to achieve their mutual relationships and to develop an advance rate model. Also, the working mechanism of previously utilized linear cutting machine is slightly different than the real excavation mechanism owing to the penetration of a number of disc cutters taking place at the same time in the rock mass in conjunction with rotation of the cutterhead. So, in order to suggest the advance rate and machine design models for small diameter TBMs, an EPB (Earth Pressure Balance) shield TBM having 3.54 m diameter cutterhead was manufactured and 19 cases of full-scale tunneling tests were performed each in 87.5 ㎥ volume of artificial rock mass. The relationships between advance rate and machine data were effectively analyzed by performing the tests in homogeneous rock mass with 70 MPa uniaxial compressive strength according to the TBM operational parameters such as thrust force and RPM of cutterhead. The utilization of the recorded penetration depth and torque values in the development of models is more accurate and realistic since they were derived through real excavation mechanism. The relationships between normal force on single disc cutter and penetration depth as well as between normal force and rolling force were suggested in this study. The prediction of advance rate and design of TBM can be performed in rock mass having 70 MPa strength using these relationships. An effort was made to improve the application of the developed model by applying the FPI (Field Penetration Index) concept which can overcome the limitation of 100% RQD (Rock Quality Designation) in artificial rock mass.

Prediction of Entrance Surface Dose in Chest Digital Radiography (흉부 디지털촬영에서 입사표면선량 예측)

  • Lee, Won-Jeong;Jeong, Sun-Cheol
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.4
    • /
    • pp.573-579
    • /
    • 2019
  • The purpose of this study is predicted easily the entrance surface dose (ESD) in chest digital radiography. We used two detector type such as flat-panel detector (FP) and IP (Imaging plate detector). ESD was measured at each exposure condition combined tube voltage with tube current using dosimeter, after attaching on human phantom, it was repeated 3 times. Phantom images were evaluated independently by three chest radiologists after blinding image. Dose-area product (DAP) or exposure index (EI) was checked by Digital Imaging and Communications in Medicine (DICOM) header on phantom images. Statistical analysis was performed by the linear regression using SPSS ver. 19.0. ESD was significant difference between FP and IP($85.7{\mu}Gy$ vs. $124.6{\mu}Gy$, p=0.017). ESD was positively correlated with image quality in FP as well as IP. In FP, adjusted R square was 0.978 (97.8%) and linear regression model was $ESD=0.407+68.810{\times}DAP$. DAP was 4.781 by calculating the $DAP=0.021+0.014{\times}340{\mu}Gy$. In IP, adjusted R square was 0.645 (64.5%) and linear regression model was $ESD=-63.339+0.188{\times}EI$. EI was 1748.97 by calculating the $EI=565.431+3.481{\times}340{\mu}Gy$. In chest digital radiography, the ESD can be easily predicted by the DICOM header information.