• Title/Summary/Keyword: quality classification

Search Result 1,597, Processing Time 0.03 seconds

Complex Neural Classifiers for Power Quality Data Mining

  • Vidhya, S.;Kamaraj, V.
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1715-1723
    • /
    • 2018
  • This work investigates the performance of fully complex- valued radial basis function network(FC-RBF) and complex extreme learning machine (CELM) based neural approaches for classification of power quality disturbances. This work engages the use of S-Transform to extract the features relating to single and combined power quality disturbances. The performance of the classifiers are compared with their real valued counterparts namely extreme learning machine(ELM) and support vector machine(SVM) in terms of convergence and classification ability. The results signify the suitability of complex valued classifiers for power quality disturbance classification.

Classification of Agricultural Reservoirs Using Multivariate Analysis (다변량분석법을 활용한 농업용 저수지 수질유형분류)

  • Choi, Eun-Hee;Kim, Hyung-Joong;Park, Youmg-Suk
    • KCID journal
    • /
    • v.17 no.2
    • /
    • pp.17-27
    • /
    • 2010
  • In order to manage the water quality in reservoir, it is necessary to understand the temporal and spatial variation of reservoirs and to classify the reservoirs. In this research, agricultural reservoirs are classified according to physical characteristics (depth, residence time, shape of the reservoir etc) and water quality using multivatriate analysis (PCA and CA). CA (Cluster Analysis) method classify reservoirs into several groups as a similarity of the reservoirs, but it is difficult to indicate a full list to the one table. In case of PCA (Principle Component Analysis) method, it has the advantage for the classification on the reservoirs depending on the water quality similarity and also it is useful to analyze the relationship between related factors through correlation analysis. However PCA is limited to classify into several groups based on the characteristics of the reservoirs and each user should be classified as randomly subjective according to the relative position of the reservoir in the figure. In conclusions, compared to conventional reservoirs classification methods, both CA and PCA methods are considered to be a classification method that describes the nature of the reservoir well, but classification results has a restriction on use, so further research will be needed to complement.

  • PDF

Video Quality Representation Classification of Encrypted HTTP Adaptive Video Streaming

  • Dubin, Ran;Hadar, Ofer;Dvir, Amit;Pele, Ofir
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.8
    • /
    • pp.3804-3819
    • /
    • 2018
  • The increasing popularity of HTTP adaptive video streaming services has dramatically increased bandwidth requirements on operator networks, which attempt to shape their traffic through Deep Packet inspection (DPI). However, Google and certain content providers have started to encrypt their video services. As a result, operators often encounter difficulties in shaping their encrypted video traffic via DPI. This highlights the need for new traffic classification methods for encrypted HTTP adaptive video streaming to enable smart traffic shaping. These new methods will have to effectively estimate the quality representation layer and playout buffer. We present a new machine learning method and show for the first time that video quality representation classification for (YouTube) encrypted HTTP adaptive streaming is possible. The crawler codes and the datasets are provided in [43,44,51]. An extensive empirical evaluation shows that our method is able to independently classify every video segment into one of the quality representation layers with 97% accuracy if the browser is Safari with a Flash Player and 77% accuracy if the browser is Chrome, Explorer, Firefox or Safari with an HTML5 player.

Sweet Persimmons Classification based on a Mixed Two-Step Synthetic Neural Network (혼합 2단계 합성 신경망을 이용한 단감 분류)

  • Roh, SeungHee;Park, DongGyu
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.10
    • /
    • pp.1358-1368
    • /
    • 2021
  • A research on agricultural automation is a main issues to overcome the shortage of labor in Korea. A sweet persimmon farmers need much time and labors for classifying profitable sweet persimmon and ill profitable products. In this paper, we propose a mixed two-step synthetic neural network model for efficiently classifying sweet persimmon images. In this model, we suggested a surface direction classification model and a quality screening model which constructed from image data sets. Also we studied Class Activation Mapping(CAM) for visualization to easily inspect the quality of the classified products. The proposed mixed two-step model showed high performance compared to the simple binary classification model and the multi-class classification model, and it was possible to easily identify the weak parts of the classification in a dataset.

Classification of Power Quality Disturbances Using Feature Vector Combination and Neural Networks (특징벡터 결합과 신경회로망을 이용한 전력외란 식별)

  • Nam, Sang-Won
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.671-674
    • /
    • 1997
  • The objective of this paper is to present a new feature-vector extraction method for the automatic detection and classification of power quality(PQ) disturbances, where FIT, DWT(Discrete Wavelet Transform), and Fisher's criterion are utilized to extract an appropriate feature vector. In particular, the proposed classifier consists of three parts: i.e., (i) automatic detection of PQ disturbances, where the wavelet transform and signal power estimation method are utilized to detect each disturbance, (ii) feature vector extraction from the detected disturbance, and (iii) automatic classification, where Multi-Layer Perceptron(MLP) is used to classify each disturbance from the corresponding extracted feature vector. To demonstrate the performance and applicability of the proposed classification algorithm, some test results obtained by analyzing 10-class power quality disturbances are also provided.

  • PDF

Classification system of fruits by color image processing (칼라 영상처리에 의한 과일분류시스템)

  • 최연호;부기동;구본호
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.5 no.3
    • /
    • pp.65-70
    • /
    • 2000
  • In general, the quality of agricultural products is determined by direct measurement of a weight or a magnitude, and it is determined by indirect or non-destructive method. In this paper, using color image processing, the algorithm to determine its quality and grading is presented. And the algorithm is applied to real-time citrus classifier. In the system, the size and color of orange are measured by not the sight of human but the digital image processing. The citrus classification system has the real-time maximum classification capacity of six quantify per one second. The system can be applied to controller design for the quality classification of agricultural products.

  • PDF

A Study on Quantification of Kano's Quality Model

  • Yasuda, Kentaro;Ootaki, Atsushi;Kainuma, Yasutaka
    • International Journal of Quality Innovation
    • /
    • v.2 no.2
    • /
    • pp.58-68
    • /
    • 2001
  • This paper proposes a method for quantifying the types of quality elements proposed by Kano; namely: attractive quality, one-dimensional quality, and must-be quality. Kano's classification of required quality has helped us improve our thinking in product development. However, his classification is conceptual rather than quantitative, and the conventional techniques of questionnaire and group interview cannot provide quantification of the relationship between the degree of customer satisfaction and the degree of sufficiency of required qualities. This paper describes how a quality element under Kano's quality model can be expressed as a utility function, and describes an application to quality design of a cellular phone.

  • PDF

An Efficient One Class Classifier Using Gaussian-based Hyper-Rectangle Generation (가우시안 기반 Hyper-Rectangle 생성을 이용한 효율적 단일 분류기)

  • Kim, Do Gyun;Choi, Jin Young;Ko, Jeonghan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.2
    • /
    • pp.56-64
    • /
    • 2018
  • In recent years, imbalanced data is one of the most important and frequent issue for quality control in industrial field. As an example, defect rate has been drastically reduced thanks to highly developed technology and quality management, so that only few defective data can be obtained from production process. Therefore, quality classification should be performed under the condition that one class (defective dataset) is even smaller than the other class (good dataset). However, traditional multi-class classification methods are not appropriate to deal with such an imbalanced dataset, since they classify data from the difference between one class and the others that can hardly be found in imbalanced datasets. Thus, one-class classification that thoroughly learns patterns of target class is more suitable for imbalanced dataset since it only focuses on data in a target class. So far, several one-class classification methods such as one-class support vector machine, neural network and decision tree there have been suggested. One-class support vector machine and neural network can guarantee good classification rate, and decision tree can provide a set of rules that can be clearly interpreted. However, the classifiers obtained from the former two methods consist of complex mathematical functions and cannot be easily understood by users. In case of decision tree, the criterion for rule generation is ambiguous. Therefore, as an alternative, a new one-class classifier using hyper-rectangles was proposed, which performs precise classification compared to other methods and generates rules clearly understood by users as well. In this paper, we suggest an approach for improving the limitations of those previous one-class classification algorithms. Specifically, the suggested approach produces more improved one-class classifier using hyper-rectangles generated by using Gaussian function. The performance of the suggested algorithm is verified by a numerical experiment, which uses several datasets in UCI machine learning repository.

Confidence Intervals on Variance Components in Two-Way Classification with Interaction Model

  • Kim, Jung I.;Park, Sung H.
    • Journal of Korean Society for Quality Management
    • /
    • v.10 no.1
    • /
    • pp.7-12
    • /
    • 1982
  • Arvesen (1969) has shown a procedure which produces an approximate confidence interval for a variance component in unbalanced one-way classification model. In this paper, his work is extended to the case when the model of interest is unbalanced two-way classification. Following the procedure described in this paper, approximate confidence intervals are computed by a Monte Carlo simulation.

  • PDF

A study on classification of weld quality in high tensile TRIP steel welding for automotive using $CO_2$ laser ($CO_2$ 레이저를 이용한 자동차용 고장력 TRIP 강 용접의 용접부 품질 분류에 대한 연구)

  • 박영환;박현성;이세헌
    • Laser Solutions
    • /
    • v.5 no.3
    • /
    • pp.21-30
    • /
    • 2002
  • In automotive industry, the studies about light weight vehicle and improving the productivity have been accomplished. For that, TRIP steel was developed and research for the laser welding process have been performed. In this study, the monitoring system using photodiode was developed for laser welding process of TRIP steel. With measuring light, neural network model for estimating bead width and tensile strength was made and weld quality classification algorithm was formulated with fuzzy inference method.

  • PDF