• Title/Summary/Keyword: quadrupole splitting

Search Result 23, Processing Time 0.019 seconds

Distributions of Hyperfine Parameters in Amorphous $Fe_{83}B_9Nb_7Cu_1$ Alloys (비정질 $Fe_{83}B_9Nb_7Cu_1$의 M$\)

  • 윤성현;김성백;김철성
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.6
    • /
    • pp.271-277
    • /
    • 1999
  • Amorphous $Fe_{83}B_9Nb_7Cu_1$ alloy has been studied by M$\"{o}$ssbauer spectroscopy. Revised Vincze method was used and distributions of hyperfine field, isomer shift, and quadrupole line broadening of the sample at various temperatures have been evaluated and Curie temperature and $H_{hf}\;(0)$ were calculated to be 393 K and 231 kOe, respectively. Temperature variation of reduced average hyperfine field shows a flattered curvein comparison with the Brillouin curve for S=1. This behavior can be explained on the basis of Handrich molecular field model, in which the parameter Δ, which is a measure of fluctuation in exchange interactions, is assumed to have the temperature dependence ${Delta}=0.75-0.64{\tau}+0.47{\tau}^2$ where $\tau$ is $T/T_C$. At low temperature, the average hyperfine field can be fitted to $H_{hf}\;(T)=H_{hf}\;(0)\;[1-0.44\;(T/T_C)^{3/2}-0.28(T/T_C)^{5/2}-… ]$, which indicates the presence long wave length spin wave excitations. At temperature near TC, reduced average hyperfine field varies as $1.00\;[1-T/T_C]^{0.39}$. It is also found that half-width of the hyperfine field distribution was 102 kOe (3.29 mm/s) at 13 K and decreased monotonically as temperature increased. Above the Curie temperature, an average quadrupole splitting value of 0.43 mm/s was found. Average line broadening due to quadrupole splitting distribution was 0.31 mm/s at 13 K and decreases monotonically to 0.23 mm/s at 320 K, whereas that due to the isomer shift distribution is 0.1 mm/s at 13 K and 0.072 mm/s at 320 K, which is much smaller than that of both hyperfine field and quadrupole splitting. The temperature dependence of the isomer shift can be fitted within the harmonic approximation to a Deybe model with a Debye temperature ${Theta}_D=424{\pm}5K$.TEX>.

  • PDF

The Magnetic Properties of Amorphous F$e_32Ni_36Cr_14P_12B_6$ (비정질 F$e_32Ni_36Cr_14P_12B_6$의 자기적 성질)

  • Kim, Jung-Gi
    • Korean Journal of Materials Research
    • /
    • v.2 no.4
    • /
    • pp.293-297
    • /
    • 1992
  • The magnetic properties of the amorphous Fe/sub 32/Ni/sub 36/Cr/sub 14/P/sub 12/B/sub 6/ has been studied by Mossbauer spectroscopy in the temperature range of 88-400K. The analysis of the spectrum of B8K, the magnetic hyperfine field and quadrupole splitting are found to be 140.5kOe and almost zero, which means that the magnetic hyperfine field is randomly oriented with respect to the principal axes of the electric field gradient, respectively. The values of quadrupole splitting in paramagnetic phase with Tc=280K are independent on the changes of temperature. Debye temperature is found to be about 288k from the analysis of recoilless fraction.

  • PDF

How Shock Wave Interacts with a Vortex ?

  • Chang Keun-Shik;Chang Se-Myong
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.04a
    • /
    • pp.1-7
    • /
    • 2004
  • When a vortex diffracts upon encountering a vortex, many strong and weak waves are produced in the course of interaction. They are the cause of shock wave attenuation and noise production. This phenomenon is fundamental to understanding the more complex supersonic turbulent Jet noise. In this paper we have reviewed the research on shock-vortex interaction we have carried on last seven years. We have computationally investigated the parameter effect. When a shock is strong, shock diffraction pattern becomes complex since the slip lines from the triple points on Mach stem curl into the vortex, causing an entropy layer. When the vortex is unstable, vortexlets are brought about each of which make shock diffraction of a reduced intensity. Strong vortex produces quadrupole noise as it impinges into a vortex. Elementary interaction models such as shock splitting, shock reflection, and shock penetration are presented based on shock tube experiment. These models are also verified by computational approach. They easily explain production and propagation of the aforementioned quadrupole noise, Diverging acoustics are explained in terms of shock-vortexlet interactions for which a computational model Is constructed.

  • PDF

Electric Quadrupole Interaction in Copper-Iron-Chromium Oxide (구리-철-크롬 산화물에서의 전기사중극자 상호작용)

  • Shu, Seung-Wook;Choi, Eun-Jung
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.3
    • /
    • pp.89-93
    • /
    • 2008
  • Ferrimagnetic Copper-Iron-Chromium Oxide $CuFe_{0.9}Cr_{1.1}O_4$ has been investigated over a temperature range from liquid nitrogen temperature upto $N{\acute{e}}el$ temperature using the Mossbauer technique. Its $N{\acute{e}}el$ temperature is found to be 355 K. Above the $N{\acute{e}}el$ temperature the quadrupole splitting is found to be 0.50 mm/s. On the other hand, all the electric quadrupole shift values are zero below the $N{\acute{e}}el$ temperature within experimental error. These seemingly contradictory phenomena have been explained by the model that the magnetic hyperfine field is randomly oriented with respect to the principal axes of the electric-field-gradient tensor.

A Study on the Properties of Fe-Se-Te System (Fe-Se-Te계의 특성 연구)

  • Choe, Seung-Han
    • Korean Journal of Materials Research
    • /
    • v.9 no.8
    • /
    • pp.854-857
    • /
    • 1999
  • The properties of Fe-Se-Te system(FeSe(sub)1-xTe(sub)x, x=0.2, 0.5, 0.8) have been studied by means of the X-ray diffraction method and Mossbauer spectroscopy. The results of X-ray diffraction patterns show that three samples have the ixed structure of tetragonal PbO and a small amount of hexagonal NiAs structure respectively. For x=0.5 the lattice parameters of tetragonal PbO structure are a=3.795$\AA$, c=5.896$\AA$ and c/a=1.55. The Mossbauer spectra were obtained with the various temperature variation and than they do not exhibit magnetic hyperfine structure but show a strong doublet. The values of observed isomer shift and quadrupole splitting suggest that the irons of all samples exist in the +2 oxidation state with a major covalent contribution. The temperature dependence of isomer shift values for x=0.8 seems to be originated from the second order Doppler effect.

  • PDF

Evidence of Spin Reorientation by Mössbauer Analysis

  • Myoung, Bo Ra;Kim, Sam Jin;Kim, Chul Sung
    • Journal of Magnetics
    • /
    • v.19 no.2
    • /
    • pp.126-129
    • /
    • 2014
  • We report the crystallographic and magnetic properties of $Ni_{0.3}Fe_{0.7}Ga_2S_4$ by means of X-ray diffractometer (XRD), a superconducting quantum interference device (SQUID) magnetometer, and a M$\ddot{o}$ssbauer spectroscopy. In particular, $Ni_{0.3}Fe_{0.7}Ga_2S_4$ was studied by M$\ddot{o}$ssbauer analysis for evidence of spin reorientation. The chalcogenide material $Ni_{0.3}Fe_{0.7}Ga_2S_4$ was fabricated by a direct reaction method. XRD analysis confirmed that $Ni_{0.3}Fe_{0.7}Ga_2S_4$ has a 2-dimension (2-D) triangular lattice structure, with space group P-3m1. The M$\ddot{o}$ssbauer spectra of $Ni_{0.3}Fe_{0.7}Ga_2S_4$ at spectra at various temperatures from 4.2 to 300 K showed that the spectrum at 4.2 K has a severely distorted 8-line shape, as spin liquid. Electric quadrupole splitting, $E_Q$ has anomalous two-points of temperature dependence of $E_Q$ curve as freezing temperature, $T_f=11K$, and N$\acute{e}$el temperature, $T_N=26K$. This suggests that there appears to be a slowly-fluctuating "spin gel" state between $T_f$ and $T_N$, caused by non-paramagnetic spin state below $T_N$. This comes from charge re-distribution due to spin-orientation above $T_f$, and $T_N$, due to the changing $E_Q$ at various temperatures. Isomer shift value ($0.7mm/s{\leq}{\delta}{\leq}0.9mm/s$) shows that the charge states are ferrous ($Fe^{2+}$), for all temperature range. The Debye temperature for the octahedral site was found to be ${\Theta}_D=260K$.

Structural Relaxation of Semiconducting Vanadate and IR-Transmitting Gallate Glasses Containing Iron

  • Nishida, Tetsuaki
    • The Korean Journal of Ceramics
    • /
    • v.6 no.1
    • /
    • pp.9-14
    • /
    • 2000
  • Glass transition temperature (T/sub g/) is proportional to the quadrupole splitting(Δ) of Fe(III) obtained from the /sup 57/Fe Mossbauer spectra (T/sub g/-Δ rule (1990)). The values of Δ reflect the distortion of Fe(III) atoms, which occupy the sites of network-forming atoms. Heat treatment of potassium vanadate and calcium gallate glasses at around the individual T/sub g/ causes a structural relaxation, accompanying a linear decrease of T/sub g/ and Δ values. These experimental results prove that T/sub g/ decreases with a decrease in the distortion of VO₄, GaO₄, and FeO₄tetrahedra, as the T/sub g/-Δ rule predicted.

  • PDF

Crystallographic and Mossbauer studies of $Ni_{0.65}Zn_{0.35}Cu_{0.1}Fe_{1.9}O_4$ ($Ni_{0.65}Zn_{0.35}Cu_{0.1}Fe_{1.9}O_4$의 결정학적 및 Mossbauer 효과 연구)

  • 김우철;이승화;홍성렬;옥항남;김철성
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.3
    • /
    • pp.118-124
    • /
    • 1998
  • $Ni_{0.65}Zn_{0.35}Cu_{0.1}Fe{1.9}O_4$ has been studied with Mossbauer spectroscopy and X-ray diffraction. The crystal structure is found to be a cubic spinel with the lattice constant $a_0=8.390{\AA}$. Mossbauer spectra of $Ni_{0.65}Zn_{0.35}Cu_{0.1}Fe{1.9}O_4$ has been taken at various temperatures ranging from 12 K to 705 K. The isomer shift indicates that iron ions are ferric at tetrahedral [A] and octahedral sites [B], respectively. The Neel temperature is determined to be $T_N=705\;K$. As the temperature increases toward $T_N$ a systematic line broadening effect in the Mossbauer spectrum is observed and interpreted to originate from different temperature dependencies of the magnetic hyperfine fields at various iron sites. The quadrupole splitting just on $T_N$ is 0.41 mm/s whereas the quadrupole shift below $T_N$ vanishes. This implies that the orientation of the magnetic hyperfine field with respect to be principal axes of the electric field gradient is random.

  • PDF

Mössbauer Spectroscopic Studies of NiZn Ferrite Prepared by the Sol-Gel Method

  • Niyaifar, Mohammad;Mohammadpour, Hory;Rodriguez, Anselmo F.R.
    • Journal of Magnetics
    • /
    • v.20 no.3
    • /
    • pp.246-251
    • /
    • 2015
  • This study was aimed to study the effect of Zn content on the hyperfine parameters and the structural variation of $Ni_{1-x}Zn_xFe_2O_4$ for x = 0, 0.2, 0.4, 0.6, and 0.8. To achieve this, a sol-gel route was used for the preparation of samples and the obtained ferrites were investigated by X-ray diffraction, scanning electron microscopy, and $M{\ddot{o}}ssbauer$ spectroscopy. The formation of spinel phase without any impurity peak was identified by X-ray diffraction of all the samples. Moreover, the estimated crystallite size by X-ray line broadening indicates a decrease with increasing Zn content. This result was in agreement with the scanning electron microscopy result, indicating the reduction in grain growth with further zinc substitution. The room-temperature $M{\ddot{o}}ssbauer$ spectra show that the hyperfine fields at both the A and B sites decreased with increasing Zn content; however, the rate of reduction is not the same for different sites. Moreover, the best fit parameter showed that the quadrupole splitting values of B site increased from the pure nickel ferrite to the sample with x = 0.8.