• Title/Summary/Keyword: quadruped walking

Search Result 120, Processing Time 0.042 seconds

An Efficient Apeliodic Static Walking Algorithm for Quadrupecl Walking Machine (4족 보행 로봇의 효율적인 비주기 정적 보행 알고리즘)

  • 정경민;박윤창
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.42-42
    • /
    • 2000
  • This paper concerns an efficient aperiodic static crab walking algorithm for quadruped walking machine in rough terrain. In this algorithm, the requirements for forward stability margin and backward stability margin could be given differently in order to consider the slope of terrain and disturbances resulting from moving velocity. To restrict the searing regions for motion variables, such as moving distances until a leg is lifted or is placed, the standard leg transferring sequence is decided to be that of wave gaits. standard support pattern is also proposed that enables the quadruped to continue forward motion using the standard leg transferring sequence without falling into deadlock.

  • PDF

Development of quadruped walking robot with insectile leg (곤충형 다리구조의 4족 보행로봇의 개발)

  • Ahn, Y.M.;Choi, G.H.;Kim, T.H.;Kim, Y.T.
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.301-306
    • /
    • 2001
  • In this paper, we developed a quadruped walking robot, FRAMIX-T, with insectile leg mechanism and we inspected the efficiency of it in detail. In robotics, the legs of insect type are appropriate for the stability and the agile movement. So we first performed a gait analysis using duty factor, stride, phase etc., and analyzed the stability margin to improve the stability of robot. On the basis of this research, we planned the wave gait suitable for FRAMIX-T and performed a walking experiment. From this result, we proved the high efficiency using insectile leg mechanism and the possibility of walking with improved stability and mobility.

  • PDF

Fault Tolerant Straight-Line Gaits of a Quadruped Robot with Feet of Flat Shape (평판 발을 가지는 사족 보행 로봇의 내고장성 걸음새)

  • Yang, Jung-Min;Kwak, Seong-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.2
    • /
    • pp.141-148
    • /
    • 2012
  • This paper proposes fault tolerant gaits of a quadruped robot with feet of flat shape. Fault tolerant gaits make it possible for a legged robot to continue static walking against a leg failure. In the previous researches, it was assumed that a legged robot had feet that have point contact with the surface. When the robot is endowed with feet having flat shape, fault tolerant gaits can show better performance compared with the former gaits, especially in terms of the stride length and gait stability. In this paper, fault tolerant gaits of a quadruped robot against a locked joint failure are addressed in straight-line motion and crab walking, respectively.

Discontinuous Zigzag Gait Planning of Quadruped Walking Robot with an Articulated Spine (허리관절을 가지는 4족보행로봇의 지그재그 걸음새 계획)

  • 박세훈;하영호;이연정
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.8
    • /
    • pp.703-710
    • /
    • 2004
  • This paper presents discontinuous zigzag gait analysis for a newly modeled quadruped walking robot with an articulated spine which connects the front and rear parts of the body. An articulated spine walking robot can move easily from side to side, which is an important feature to guarantee a larger gait stability margin than that of a conventional single rigid-body walking robot. First, we suggest a kinematic modeling of an articulated spine robot which has new parameters such as a waist-joint angle, a rotate angle of a front and rear body and describe characteristics of gait using an articulated spine. Next, we compared the difference of walking motion of newly modeled robot with that of a single rigid-body robot and analyzed the gait of an articulated spine robot using new parameters. On the basis of above result, we proposed a best walking motion with maximum stability margin. To show the effectiveness of proposed gait planning by simulation, firstly the fastest walking motion is identified based on the maximum stride, because the longer the stride, the faster the walking speed. Next, the gait stability margin variation of an articulated spine robot is compared according to the allowable waist-joint angle.

A study for semi-static quadruped walking robot using wave gait (물결걸음새를 이용한 준정적 4족 보행로봇에 관한 연구)

  • 최기훈;김태형;유재명;김영탁
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.551-554
    • /
    • 2001
  • A necessity of remote control robots or various searching robots etc. that accomplish works given instead of human under long distance and extreme environment such as volcano, universe, deep-sea exploration and nuclear power plant etc. is increasing, and so the development and the research regarding these mobile robots are actively progressing. The wheel mobile robot or the track mobile robot have a sufficient energy efficiency under this en, but also have a lot of limits to accomplish works given which are caused from the restriction of mobile ability. Therefore, recently many researches for the walking robot with superior mobility and energy efficiency on the terrain, which is uneven or where obstacles, inclination and stairways exist, have been doing. The research for these walking robots is separated into fields of mechanism and control system, gait research, circumference environment and system condition recognition etc. greatly. It is a research field that the gait research among these is the centralist in actual implementation of walking robot unlike different mobile robots. A research field for gait of walking robot is classified into two parts according to the nature of the stability and the walking speed, static gait or dynamic gait. While the speed of a static gait is lower than that of a dynamic gait, a static gait which moves the robot to maintain a static stability guarantees a superior stability relatively. A dynamic gait, which make the robot walk controlling the instability caused by the gravity during the two leg supporting period and so maintaining the stability of the robot body spontaneously, is suitable for high speed walking but has a relatively low stability and a difficulty in implementation compared with a static gait. The quadruped walking robot has a strong point that can embody these gaits together. In this research, we will develope an autonomous quadruped robot with an asaptibility to the environment by selectry appropriate gait, element such as duty factor, stride, trajectory, etc.

  • PDF

A development of quadruped walking robot with 3-D orthogonal legs using pantograph mechanism (팬터그라프 기구를 이용한 3차원 수직 직교형 다리 기구를 가진 4각 보행로봇의 개발)

  • 김인준;정경민
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1593-1596
    • /
    • 1997
  • Because the leg mechanism of walking roblt affect on the mobility and energy efficiency, we focus on the design of new leg mechanism based on the previous leg mechanisms. We mention the deficiency of the previous leg mechanisms and propose a new leg mechanism that consists of a 2-d.o.f pantograph mechanism and a vertical linear actuator. The pantograph mechanism is attached to the horizontal plane of the body and the verical linear actuator is vertical to that plane. In order to design a quadruped walking robot, we consider the kinematics of the 2-d.o.f pantograph mechanism and the arrangement of twol linear motion guides that drive the pantograph mechanism.

  • PDF