• Title/Summary/Keyword: quadrilateral

Search Result 280, Processing Time 0.027 seconds

A TWO-DIMENSIONAL FINITE VOLUME METHOD FOR TRANSIENT SIMULATION OF TIME- AND SCALE-DEPENDENT TRANSPORT IN HETEROGENEOUS AQUIFER SYSTEMS

  • Liu, F.;Turner, I.;Ahn, V.;Su, N.
    • Journal of applied mathematics & informatics
    • /
    • v.11 no.1_2
    • /
    • pp.215-241
    • /
    • 2003
  • In this paper, solute transport in heterogeneous aquifers using a modified Fokker-Planck equation (MFPE) is investigated. This newly developed mathematical model is characterised with a time-, scale-dependent dispersivity. A two-dimensional finite volume quadrilateral mesh method (FVQMM) based on a quadrilateral background interpolation mesh is developed for analysing the model. The FVQMM transforms the coupled non-linear partial differential equations into a system of differential equations, which is solved using backward differentiation formulae of order one through five in order to advance the solution in time. Three examples are presented to demonstrate the model verification and utility. Henry's classic benchmark problem is used to show that the MFPE captures significant features of transport phenomena in heterogeneous porous media including enhanced transport of salt in the upper layer due to its parameters that represent the dependence of transport processes on scale and time. The time and scale effects are investigated. Numerical results are compared with published results on the some problems.

Quadrilateral Irregular Network for Mesh-Based Interpolation

  • Tae Beom Kim;Chihyung Lee
    • The Journal of Engineering Geology
    • /
    • v.33 no.3
    • /
    • pp.439-459
    • /
    • 2023
  • Numerical analysis has been adopted in nearly all modern scientific and engineering fields due to the rapid and ongoing evolution of computational technology, with the number of grid or mesh points in a given data field also increasing. Some values must be extracted from large data fields to evaluate and supplement numerical analysis results and observational data, thereby highlighting the need for a fast and effective interpolation approach. The quadrilateral irregular network (QIN) proposed in this study is a fast and reliable interpolation method that is capable of sufficiently satisfying these demands. A comparative sensitivity analysis is first performed using known test functions to assess the accuracy and computational requirements of QIN relative to conventional interpolation methods. These same interpolation methods are then employed to produce simple numerical model results for a real-world comparison. Unlike conventional interpolation methods, QIN can obtain reliable results with a guaranteed degree of accuracy since there is no need to determine the optimal parameter values. Furthermore, QIN is a computationally efficient method compared with conventional interpolation methods that require the entire data space to be evaluated during interpolation, even if only a subset of the data space requires interpolation.

A new quadrilateral 5-node non-conforming membrane element with drilling DOF

  • Lee, Tae-Yeol;Choi, Chang-Koon
    • Structural Engineering and Mechanics
    • /
    • v.14 no.6
    • /
    • pp.699-712
    • /
    • 2002
  • In this paper, a new quadrilateral 5-node non-conforming membrane element with drilling degrees of freedom is presented. The main advantage of these elements is the relatively small number of integration points to evaluate a stiffness matrix comparing to the existing transition membrane elements (CLM elements). Moreover, the presented elements pass the patch test by virtue of the Direct Modification Method incorporated into the element formulation. The presented 5-node elements are proved to be very efficient when used in the local mesh refinement for the in-plane structures which have stress concentrations. And some numerical studies also show the good performance of the new element developed in this study.

PERIMETER CENTROIDS OF QUADRILATERALS

  • Kim, Wonyong;Kim, Dong-Soo;Kim, Sangwook;Lim, So Yeon
    • Honam Mathematical Journal
    • /
    • v.39 no.3
    • /
    • pp.431-442
    • /
    • 2017
  • For a quadrilateral P, we consider the centroid $G_0$ of the vertices of P, the perimeter centroid $G_1$ of the edges of P and the centroid $G_2$ of the interior of P, respectively. We denote by M the intersection point of two diagonals of P. If P is a parallelogram, then we have $G_0=G_1=G_2=M$. Conversely, one of $G_0=M$ and $G_2=M$ implies that P is a parallelogram. In this paper, we show that $G_1=M$ is also a characteristic property of parallelograms.

Automatic Generation of Hexahedral Meshes in Shell Structures (쉘 구조물에서 육면체 요소망의 자동 생성)

  • Lee B.C.;Chae S.W.;Kwon K.Y.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.1
    • /
    • pp.41-48
    • /
    • 2006
  • This paper describes hexahedral mesh generation for various shell structures, such as automobile bodies, plastic injection mold components and sheet metal parts by using chordal surfaces. After generaling one-layered tetrahedral mesh by an advancing front algorithm, the chordal surfaces are constructed by cutting of tetrahedral elements. Since the choral surfaces are composed of tri/quad elements with poor quality, they are transformed into quadrilateral elements with good quality. Hexahedral elements are then generated by offsetting these quadrilateral elements. The boundary nodes of hexahedral elements are generated on the outer surfaces of the original shell structures. Sample models including nonuniform thickness have been tested to validate the proposed algorithm.

A Camera Pose Estimation Method for Rectangle Feature based Visual SLAM (사각형 특징 기반 Visual SLAM을 위한 자세 추정 방법)

  • Lee, Jae-Min;Kim, Gon-Woo
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.1
    • /
    • pp.33-40
    • /
    • 2016
  • In this paper, we propose a method for estimating the pose of the camera using a rectangle feature utilized for the visual SLAM. A warped rectangle feature as a quadrilateral in the image by the perspective transformation is reconstructed by the Coupled Line Camera algorithm. In order to fully reconstruct a rectangle in the real world coordinate, the distance between the features and the camera is needed. The distance in the real world coordinate can be measured by using a stereo camera. Using properties of the line camera, the physical size of the rectangle feature can be induced from the distance. The correspondence between the quadrilateral in the image and the rectangle in the real world coordinate can restore the relative pose between the camera and the feature through obtaining the homography. In order to evaluate the performance, we analyzed the result of proposed method with its reference pose in Gazebo robot simulator.

Morphological Transformation of Shock Waves Behind a Flat Plate

  • Chang, Se-Nyong;Lee, Soogab;Chang, Keun-Shik
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.665-670
    • /
    • 2001
  • The interaction of a travelling shock with the shear layer of a flat plate is studied computationally. The Euler and Navier-Stokes equations are solved numerically on quadrilateral unstructured adaptive grids. The flat plate is installed horizontally on the central axis of a shock tube. The shear layer is first created by two shock waves at different speeds splitted by a flat plate. A series of small vortices is developed as a consequence in the shear layer. The shock wave reflected at the end wall impinges the shear layer. The complicated shock dynamics in the evolution to the pseudo-steady state is represented with the morphological transformation of a planar shock into an oblique shock.

  • PDF

Forming Method to Manufacture a Doubly Curved General Quadrilateral Sheet Metal Using the Incremental Roll Forming Process (점진적 롤 성형 공정을 이용한 이중 곡률을 갖는 일반적인 사각형 시편의 성형 방법)

  • Yoon S.J.;Yang D.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.978-981
    • /
    • 2005
  • In order to manufacture a doubly curved sheet metal effectively, a flexible incremental roll forming process has been developed by adopting the advantages of the incremental forming process and the roll forming process by combining inherent flexibility of the incremental forming process and continuous deformation of the roll forming process. The forming method has been further enhanced to form general quadrilateral blanks (including a square, a rectangle, a symmetrical trapezoid and an asymmetrical trapezoid, etc.) into doubly curved shapes by controlling the forming paths developed by various experiments.

  • PDF

VARIOUS CENTROIDS OF QUADRILATERALS

  • Lee, Seul;Kim, Dong-Soo;Park, Hyeon
    • Honam Mathematical Journal
    • /
    • v.39 no.2
    • /
    • pp.247-258
    • /
    • 2017
  • For a quadrilateral P, we consider the centroid $G_0$ of the vertices of P, the perimeter centroid $G_1$ of the edges of P and the centroid $G_2$ of the interior of P, respectively. It is well known that P satisfies $G_0=G_1$ or $G_0=G_2$ if and only if it is a parallelogram. In this note, we investigate various quadrilaterals satisfying $G_1=G_2$. As a result, for example, we show that among circumscribed quadrilaterals kites are the only ones satisfying $G_1=G_2$. Furthermore, such kites are completely classified.