• Title/Summary/Keyword: quadratic effects

Search Result 383, Processing Time 0.029 seconds

Genetic Parameter Estimates for Ultrasonic Meat Qualities in Hanwoo Cows

  • Lee, D.H.;Choudhary, V.;Lee, G.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.4
    • /
    • pp.468-474
    • /
    • 2006
  • Real time ultrasound data was generated on 10,596 live Hanwoo cows to study genetic variation on ultrasonic beef quality traits and to assess the best model to estimate genetic parameters on these traits. Pedigree stacking and data validation was done using the SAS statistical software and the genetic parameter estimates were obtained by EM-REML algorithm. Out of the five different multi-trait mixed animal models constructed, the optimal model included fixed effects of herd, year-season-appraisal, body condition score, linear and quadratic covariates for chest girth, the linear covariate effect of age and the random animal and residual effect of the five models studied. The heritability of longissimus muscle area (LMA), $12^{th}$ rib measurement of back fat thickness (BF) and marbling score (MS) was 0.11, 0.17 and 0.15, respectively. Genetic correlation of LMA vs. BF, LMA vs. MS and BF vs. MS was -0.15, 0.06 and 0.61, respectively. The results showed presence of genetic variation in these ultrasonic beef quality traits in Hanwoo cows and suggest that the selection of Hanwoo cows may be possible by performing ultrasonic scans on live animals, which will ultimately be helpful in reducing the generation interval and the cost of selection procedure.

Drying Ginseng Slices Using a Combination of Microwave and Far-Infrared Drying Techniques

  • Gong, Yuan Juan;Sui, Ying;Han, Chung Su;Ning, Xiao Feng
    • Journal of Biosystems Engineering
    • /
    • v.41 no.1
    • /
    • pp.34-42
    • /
    • 2016
  • Purpose: This study was performed to improve the drying quality and drying rate of ginseng slices by combining microwave and far-infrared drying techniques. Methods: Based on single-factor experiments and analyses, a quadratic regression orthogonal rotation combination design was adopted to study the effects of the moisture content at the conversion point between the microwave and far-infrared techniques, the ginseng slice thickness and the far-infrared drying temperature on the chip drying time, the surface color difference value, the nutritional composition and the surface shrinkage rate index. Results: Compared to the far-infrared drying alone, the combined microwave and far-infrared drying resulted in an increase in the saponin content of the ginseng slices and reductions in the drying time, surface color difference, and shrinkage rate. Conclusions: We established a mathematical model of the relationships between the surface shrinkage rate index and the experimental factors using the multi-objective nonlinear optimization method to determine the optimal parameter combination, which was confirmed to be the following: microwave and far-infrared moisture contents of 65%, a ginseng slice thickness of 1 mm, and a far-infrared drying temperature of $54^{\circ}C$.

Evaluation of Micronucleus Frequency in Cytokinesis-blocked Bovine Lymphocytes from Regions around Wolsong Nuclear Power Plant (세포질 분열 차단 림프구를 이용한 월성원자력발전소 주변 소의 미소핵 발생 평가)

  • Kim, Se-ra;Kim, Tae-hwan;Kim, Sung-ho
    • Korean Journal of Veterinary Research
    • /
    • v.43 no.3
    • /
    • pp.333-338
    • /
    • 2003
  • Cytogenetic and hematological analysis was performed in bovine peripheral blood from the regions around Wolsong nuclear power plant and control area. The frequency of micronuclei (MN) in peripheral blood lymphocytes from cattle was used as a biomarker of radiobiological effects resulting from exposure to environmental radiation. An estimated dare of radiation was calculated by a best fitting linear-quadratic model based on the radiation-induced MN formation from the bovine lymphocytes exposed in vitro to radiation over the range from 0 Gy to 4 Gy. MN rates in lymphocytes of cattle from Wolsong nuclear power plant and control area were 9.87/1,000 and 9.60/1,000, respectively. There were no significant differences in MN frequencies and hematological values in cattle between Wolsong and control area. The study indicates that the MN assay is a rapid, sensitive and accurate method that can be used to monitor a large population exposed to radiation.

A Comparison of Artificial Neural Networks and Statistical Pattern Recognition Methods for Rotation Machine Condition Classification (회전기계 고장 진단에 적용한 인공 신경회로망과 통계적 패턴 인식 기법의 비교 연구)

  • Kim, Chang-Gu;Park, Kwang-Ho;Kee, Chang-Doo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.12
    • /
    • pp.119-125
    • /
    • 1999
  • This paper gives an overview of the various approaches to designing statistical pattern recognition scheme based on Bayes discrimination rule and the artificial neural networks for rotating machine condition classification. Concerning to Bayes discrimination rule, this paper contains the linear discrimination rule applied to classification into several multivariate normal distributions with common covariance matrices, the quadratic discrimination rule under different covariance matrices. Also we discribes k-nearest neighbor method to directly estimate a posterior probability of each class. Five features are extracted in time domain vibration signals. Employing these five features, statistical pattern classifier and neural networks have been established to detect defects on rotating machine. Four different cases of rotation machine were observed. The effects of k number and neural networks structures on monitoring performance have also been investigated. For the comparison of diagnosis performance of these two method, their recognition success rates are calculated form the test data. The result of experiment which classifies the rotating machine conditions using each method presents that the neural networks shows the highest recognition rate.

  • PDF

Optimization of operating parameters to remove and recover crude oil from contaminated soil using subcritical water extraction process

  • Taki, Golam;Islam, Mohammad Nazrul;Park, Seong-Jae;Park, Jeong-Hun
    • Environmental Engineering Research
    • /
    • v.23 no.2
    • /
    • pp.175-180
    • /
    • 2018
  • Box-Behnken Design (BBD) under response surface methodology (RSM) was implemented to optimization the operating parameters and assess the removal and recovery efficiencies of crude oil from contaminated soil using subcritical water extraction. The effects of temperature, extraction time and water flow rate were explored, and the results indicate that temperature has a great impact on crude oil removal and recovery. The correlation coefficients for oil removal ($R^2=0.74$) and recovery ($R^2=0.98$) suggest that the proposed quadratic model is useful. When setting the target removal and recovery (>99%), BBD-RSM determined the optimum condition to be a temperature of $250^{\circ}C$, extraction time of 120 min, and water flow rate of 1 mL/min. An experiment was carried out to confirm the results, with removal and recovery efficiencies of 99.69% and 87.33%, respectively. This result indicates that BBD is a suitable method to optimize the process variables for crude oil removal and recovery from contaminated soil.

Nonlinear free vibration and post-buckling of FG-CNTRC beams on nonlinear foundation

  • Shafiei, Hamed;Setoodeh, Ali Reza
    • Steel and Composite Structures
    • /
    • v.24 no.1
    • /
    • pp.65-77
    • /
    • 2017
  • The purpose of this research is to study the nonlinear free vibration and post-buckling analysis of functionally graded carbon nanotube reinforced composite (FG-CNTRC) beams resting on a nonlinear elastic foundation. Uniformly and functionally graded distributions of single walled carbon nanotubes as reinforcing phase are considered in the polymeric matrix. The modified form of rule of mixture is used to estimate the material properties of CNTRC beams. The governing equations are derived employing Euler-Bernoulli beam theory along with energy method and Hamilton's principle. Applying von $K\acute{a}rm\acute{a}n's$ strain-displacement assumptions, the geometric nonlinearity is taken into consideration. The developed governing equations with quadratic and cubic nonlinearities are solved using variational iteration method (VIM) and the analytical expressions and numerical results are obtained for vibration and stability analysis of nanocomposite beams. The presented comparative results are indicative for the reliability, accuracy and fast convergence rate of the solution. Eventually, the effects of different parameters, such as foundation stiffness, volume fraction and distributions of carbon nanotubes, slenderness ratio, vibration amplitude, coefficients of elastic foundation and boundary conditions on the nonlinear frequencies, vibration response and post-buckling loads of FG-CNTRC beams are examined. The developed analytical solution provides direct insight into parametric studies of particular parameters of the problem.

Risk Evaluation in FMEA when the Failure Severity Depends on the Detection Time (FMEA에서 고장 심각도의 탐지시간에 따른 위험성 평가)

  • Jang, Hyeon Ae;Yun, Won Young;Kwon, Hyuck Moo
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.4
    • /
    • pp.136-142
    • /
    • 2016
  • The FMEA is a widely used technique to pre-evaluate and avoid risks due to potential failures for developing an improved design. The conventional FMEA does not consider the possible time gap between occurrence and detection of failure cause. When a failure cause is detected and corrected before the failure itself occurs, there will be no other effect except the correction cost. But, if its cause is detected after the failure actually occurs, its effects will become more severe depending on the duration of the uncorrected failure. Taking this situation into account, a risk metric is developed as an alternative to the RPN of the conventional FMEA. The severity of a failure effect is first modeled as linear and quadratic severity functions of undetected failure time duration. Assuming exponential probability distribution for occurrence and detection time of failures and causes, the expected severity is derived for each failure cause. A new risk metric REM is defined as the product of a failure cause occurrence rate and the expected severity of its corresponding failure. A numerical example and some discussions are provided for illustration.

Risk Evaluation Based on the Hierarchical Time Delay Model in FMEA (FMEA에서 계층적 시간 지연 모형에 근거한 위험평가)

  • Jang, Hyeon Ae;Lee, Min Koo;Hong, Sung Hoon;Kwon, Hyuck Moo
    • Journal of Korean Society for Quality Management
    • /
    • v.44 no.2
    • /
    • pp.373-388
    • /
    • 2016
  • Purpose: This paper suggests a hierarchical time delay model to evaluate failure risks in FMEA(failure modes and effects analysis). In place of the conventional RPN(risk priority number), a more reasonable and objective risk metric is proposed under hierarchical failure cause structure considering time delay between a failure mode and its causes. Methods: The structure of failure modes and their corresponding causes are analyzed together with the time gaps between occurrences of causes and failures. Assuming the severity of a failure depends on the length of the delayed time for corrective action, a severity model is developed. Using the expected severity, a risk priority metric is defined. Results: For linear and quadratic types of severity, nice forms of expected severity are derived and a meaningful metric for risk evaluation is defined. Conclusion: The suggested REM(risk evaluation metric) provides a more reasonable and objective risk measure than the conventional RPN for FMEA.

The Effect of Using Graphing Calculators on Students' Understanding Functions and Attitudes Towards Mathematics and Graphing Calculators

  • Kwon, Oh-Nam;Kim, Min-Kyeong
    • Research in Mathematical Education
    • /
    • v.4 no.1
    • /
    • pp.1-22
    • /
    • 2000
  • The purpose of this study was to investigate the effects of using graphing calculators on students' understanding of the linear and quadratic function concepts. The populators of this study are tenth graders at high school in Seoul, one class for the treatment group and another class for the comparison group, and experiment period is 14 weeks including two weeks for school regular exams.Function tests used in the study was proposed which described a conceptual knowledge of functions in terms of the following components: a) Conceptual understanding, b) Interpreting a function in terms of a verbal experission, c) Translating between different representations of functions, and d) Mathematical modeling a real-world situation using functions. Even though the group test means of the individual components of conceptual understanding, interpreting, translating, mathematical modeling did not differ significantly, there is evidence that the two groups differed in their performance on conceptual understanding. It was shown that students learned algebra using graphing calculators view graphs more globally. The attitude survey assessed students' attitudes and perceptions about the value of mathematics, the usefulness of graphs in mathematics, mathematical confidence, mathematics anxiety, and their feelings about calculators. The overall t-test was not statistically significant, but the students in the treatment group showed significantly different levels of anxiety toward mathematics.

  • PDF

Spring-back Evaluation of Automotive Sheets Based on Combined Isotropic-Kinematic Hardening Rule (혼합 등방-이동 경화규칙에 기초한 자동차용 알루미늄합금 및 Dual-Phase 강 판재의 스프링백 예측)

  • ;;;Chongmin kim;Michael L. Wenner
    • Transactions of Materials Processing
    • /
    • v.13 no.1
    • /
    • pp.15-20
    • /
    • 2004
  • In order to evaluate spring-back behavior in automotive sheet forming processes, a panel shape idealized as a double S-rail has been investigated. After spring-back has been predicted for double S-rails using the finite element analysis, results has been compared with experimental measurements for three automotive sheets. To account for hardening behavior such as the Bauschinger and transient effects in addition to anisotropic behavior, the combined isotropic-kinematic hardening law based on the Chaboche type model and a recently developed non-quadratic anisotropic yield function have been utilized, respectively.