• 제목/요약/키워드: qPCR assays

검색결과 87건 처리시간 0.026초

Transforming Growth Factor β1/Smad4 Signaling Affects Osteoclast Differentiation via Regulation of miR-155 Expression

  • Zhao, Hongying;Zhang, Jun;Shao, Haiyu;Liu, Jianwen;Jin, Mengran;Chen, Jinping;Huang, Yazeng
    • Molecules and Cells
    • /
    • 제40권3호
    • /
    • pp.211-221
    • /
    • 2017
  • Transforming growth factor ${\beta}1$ $(TGF{\beta}1)/Smad4$ signaling plays a pivotal role in maintenance of the dynamic balance between bone formation and resorption. The microRNA miR-155 has been reported to exert a significant role in the differentiation of macrophage and dendritic cells. The goal of this study was to determine whether miR-155 regulates osteoclast differentiation through $TGF{\beta}1/Smad4$ signaling. Here, we present that $TGF{\beta}1$ elevated miR-155 levels during osteoclast differentiation through the stimulation of M-CSF and RANKL. Additionally, we found that silencing Smad4 attenuated the upregulation of miR-155 induced by $TGF{\beta}1$. The results of luciferase reporter experiments and ChIP assays demonstrated that $TGF{\beta}1$ promoted the binding of Smad4 to the miR-155 promoter at a site located in 454 bp from the transcription start site in vivo, further verifying that miR-155 is a transcriptional target of the $TGF{\beta}1/Smad4$ pathway. Subsequently, TRAP staining and qRT-PCR analysis revealed that silencing Smad4 impaired the $TGF{\beta}1$-mediated inhibition on osteoclast differentiation. Finally, we found that miR-155 may target SOCS1 and MITF to suppress osteoclast differentiation. Taken together, we provide the first evidence that $TGF{\beta}1/Smad4$ signaling affects osteoclast differentiation by regulation of miR-155 expression and the use of miR-155 as a potential therapeutic target for osteoclast-related diseases shows great promise.

Downregulation of FoxM1 sensitizes nasopharyngeal carcinoma cells to cisplatin via inhibition of MRN-ATM-mediated DNA repair

  • Li, Dandan;Ye, Lin;Lei, Yue;Wan, Jie;Chen, Hongyan
    • BMB Reports
    • /
    • 제52권3호
    • /
    • pp.208-213
    • /
    • 2019
  • Chemoresistance is the primary obstacle in the treatment of locally advanced and metastatic nasopharyngeal carcinoma (NPC). Recent evidence suggests that the transcription factor forkhead box M1 (FoxM1) is involved in chemoresistance. Our group previously confirmed that FoxM1 is overexpressed in NPC. In this study, we investigated the role of FoxM1 in cisplatin resistance of the cell lines 5-8F and HONE-1 and explored its possible mechanism. Our results showed that FoxM1 and NBS1 were both overexpressed in NPC tissues based on data from the GSE cohort (GSE12452). Then, we measured FoxM1 levels in NPC cells and found FoxM1 was overexpressed in NPC cell lines and could be stimulated by cisplatin. MTT and clonogenic assays, flow cytometry, ${\gamma}H2AX$ immunofluorescence, qRT-PCR, and western blotting revealed that downregulation of FoxM1 sensitized NPC cells to cisplatin and reduced the repair of cisplatin-induced DNA double-strand breaks via inhibition of the MRN (MRE11-RAD50-NBS1)-ATM axis, which might be related to the ability of FoxM1 to regulate NBS1. Subsequently, we demonstrated that enhanced sensitivity of FoxM1 knockdown cells could be reduced by overexpression of NBS1. Taken together, our data demonstrate that downregulation of FoxM1 could improve the sensitivity of NPC cells to cisplatin through inhibition of MRN-ATM-mediated DNA repair, which could be related to FoxM1-dependent regulation of NBS1.

Ethanol extract separated from Sargassum horneri (Turner) abate LPS-induced inflammation in RAW 264.7 macrophages

  • Sanjeewa, K.K. Asanka;Jayawardena, Thilina U.;Kim, Hyun-Soo;Kim, Seo-Young;Ahn, Ginnae;Kim, Hak-Ju;Fu, Xiaoting;Jee, Youngheun;Jeon, You-Jin
    • Fisheries and Aquatic Sciences
    • /
    • 제22권2호
    • /
    • pp.6.1-6.10
    • /
    • 2019
  • Background: This study is aimed at identifying the anti-inflammatory properties of 70% ethanol extract produced from an edible brown seaweed Sargassum horneri (SJB-SHE) with industrial-scale production by Seojin Biotech Co. Ltd. S. horneri is a rich source of nutrient and abundantly growing along the shores of Jeju, South Korea. Methods: Here, we investigated the effect of SJB-SHE on LPS-activated RAW 264.7 macrophages. The cytotoxicity and NO production of SJB-SHE were evaluated using MTT and Griess assays, respectively. Additionally, protein expression and gene expression levels were quantified using ELISA, Western blots, and RT-qPCR. Results: Our results indicated that pre-treatment of RAW 264.7 macrophages with SJB-SHE significantly inhibited LPS-induced NO and $PGE_2$ production. SJB-SHE downregulated the proteins and genes expression of LPS-induced iNOS and COX2. Additionally, SJB-SHE downregulated LPS-induced production of pro-inflammatory cytokines (tumor necrosis factor-${\alpha}$, interleukin (IL)-6, and IL-$1{\beta}$). Furthermore, SJB-SHE inhibited nuclear factor kappa-B (NF-${\kappa}B$) activation and translocation to the nucleus. SJB-SHE also suppressed the phosphorylation of mitogen-activated protein kinases (ERK1/2 and JNK). Conclusions: Collectively, our results demonstrated that SJB-SHE has a potential anti-inflammatory property to use as a functional food ingredient in the future.

Perilipin 5 is a novel target of nuclear receptor LRH-1 to regulate hepatic triglycerides metabolism

  • Pantha, Rubee;Lee, Jae-Ho;Bae, Jae-Hoon;Koh, Eun Hee;Shin, Minsang;Song, Dae-Kyu;Im, Seung-Soon
    • BMB Reports
    • /
    • 제54권9호
    • /
    • pp.476-481
    • /
    • 2021
  • Liver receptor homolog-1 (LRH-1) has emerged as a regulator of hepatic glucose, bile acid, and mitochondrial metabolism. However, the functional mechanism underlying the effect of LRH-1 on lipid mobilization has not been addressed. This study investigated the regulatory function of LRH-1 in lipid metabolism in maintaining a normal liver physiological state during fasting. The Lrh-1f/f and LRH-1 liver-specific knockout (Lrh-1LKO) mice were either fed or fasted for 24 h, and the liver and serum were isolated. The livers were used for qPCR, western blot, and histological analysis. Primary hepatocytes were isolated for immunocytochemistry assessments of lipids. During fasting, the Lrh-1LKO mice showed increased accumulation of triglycerides in the liver compared to that in Lrh-1f/f mice. Interestingly, in the Lrh-1LKO liver, decreases in perilipin 5 (PLIN5) expression and genes involved in β-oxidation were observed. In addition, the LRH-1 agonist dialauroylphosphatidylcholine also enhanced PLIN5 expression in human cultured HepG2 cells. To identify new target genes of LRH-1, these findings directed us to analyze the Plin5 promoter sequence, which revealed -1620/-1614 to be a putative binding site for LRH-1. This was confirmed by promoter activity and chromatin immunoprecipitation assays. Additionally, fasted Lrh-1f/f primary hepatocytes showed increased co-localization of PLIN5 in lipid droplets (LDs) compared to that in fasted Lrh-1LKO primary hepatocytes. Overall, these findings suggest that PLIN5 might be a novel target of LRH-1 to mobilize LDs, protect the liver from lipid overload, and manage the cellular needs during fasting.

Hypoxic condition enhances chondrogenesis in synovium-derived mesenchymal stem cells

  • Bae, Hyun Cheol;Park, Hee Jung;Wang, Sun Young;Yang, Ha Ru;Lee, Myung Chul;Han, Hyuk-Soo
    • 생체재료학회지
    • /
    • 제22권4호
    • /
    • pp.271-278
    • /
    • 2018
  • Background: The chondrogenic differentiation of mesenchymal stem cells (MSCs) is regulated by many factors, including oxygen tensions, growth factors, and cytokines. Evidences have suggested that low oxygen tension seems to be an important regulatory factor in the proliferation and chondrogenic differentiation in various MSCs. Recent studies report that synovium-derived mesenchymal stem cells (SDSCs) are a potential source of stem cells for the repair of articular cartilage defects. But, the effect of low oxygen tension on the proliferation and chondrogenic differentiation in SDSCs has not characterized. In this study, we investigated the effects of hypoxia on proliferation and chondrogenesis in SDSCs. Method: SDSCs were isolated from patients with osteoarthritis at total knee replacement. To determine the effect of oxygen tension on proliferation and colony-forming characteristics of SDSCs, A colony-forming unit (CFU) assay and cell counting-based proliferation assay were performed under normoxic (21% oxygen) or hypoxic (5% oxygen). For in vitro chondrogenic differentiation, SDSCs were concentrated to form pellets and subjected to conditions appropriate for chondrogenic differentiation under normoxia and hypoxia, followed by the analysis for the expression of genes and proteins of chondrogenesis. qRT-PCR, histological assay, and glycosoaminoglycan assays were determined to assess chondrogenesis. Results: Low oxygen condition significantly increased proliferation and colony-forming characteristics of SDSCs compared to that of SDSCs under normoxic culture. Similar pellet size and weight were found for chondrogensis period under hypoxia and normoxia condition. The mRNA expression of types II collagen, aggrecan, and the transcription factor SOX9 was increased under hypoxia condition. Histological sections stained with Safranin-O demonstrated that hypoxic conditions had increased proteoglycan synthesis. Immunohistochemistry for types II collagen demonstrated that hypoxic culture of SDSCs increased type II collagen expression. In addition, GAG deposition was significantly higher in hypoxia compared with normoxia at 21 days of differentiation. Conclusion: These findings show that hypoxia condition has an important role in regulating the synthesis ECM matrix by SDSCs as they undergo chondrogenesis. This has important implications for cartilage tissue engineering applications of SDSCs.

Carbon Source Affects Synthesis, Structures, and Activities of Mycelial Polysaccharides from Medicinal Fungus Inonotus obliquus

  • He, Huihui;Li, Yingying;Fang, Mingyue;Li, Tiantian;Liang, Yunxiang;Mei, Yuxia
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권6호
    • /
    • pp.855-866
    • /
    • 2021
  • The effects of various carbon sources on mycelial growth and polysaccharide synthesis of the medicinal fungus Inonotus obliquus in liquid fermentation were investigated. After 12-d fermentation, mycelial biomass, polysaccharide yield, and polysaccharide content were significantly higher in Glc+Lac group (glucose and lactose used as combined carbon source) than in other groups. Crude polysaccharides (CIOPs) and the derivative neutral polysaccharides (NIOPs) were obtained from mycelia fermented using Glc, fructose (Fru), Lac, or Glc+Lac as carbon source. Molecular weights of four NIOPs (termed as NIOPG, NIOPF, NIOPL, and NIOPGL) were respectively 780.90, 1105.00, 25.32, and 10.28 kDa. Monosaccharide composition analyses revealed that NIOPs were composed of Glc, Man, and Gal at different molar ratios. The NIOPs were classified as α-type heteropolysaccharides with 1→2, 1→3, 1→4, 1→6 linkages in differing proportions. In in vitro cell proliferation assays, viability of RAW264.7 macrophages was more strongly enhanced by NIOPL or NIOPGL than by NIOPG or NIOPF, and proliferation of HeLa or S180 tumor cells was more strongly inhibited by NIOPG or NIOPGL than by NIOPF or NIOPL, indicating that immune-enhancing and anti-tumor activities of NIOPs were substantially affected by carbon source. qRT-PCR analysis revealed that expression levels of phosphoglucose isomerase (PGI) and UDP-Glc 4-epimerase (UGE), two key genes involved in polysaccharide synthesis, varied depending on carbon source. Our findings, taken together, clearly demonstrate that carbon source plays an essential role in determining structure and activities of I. obliquus polysaccharides by regulating expression of key genes in polysaccharide biosynthetic pathway.

LncRNA LINC01232 Enhances Proliferation, Angiogenesis, Migration and Invasion of Colon Adenocarcinoma Cells by Downregulating miR-181a-5p

  • Yu Yuan;Zhou Long
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권3호
    • /
    • pp.398-409
    • /
    • 2023
  • LncRNAs play crucial roles in the progression of colon adenocarcinoma (COAD), but the role of LINC01232 in COAD has not received much attention. The present study was designed to explore the related mechanisms of LINC01232 in the progression of COAD. LINC01232, miR-181a-5p, p53, c-myc, Bcl-2, cyclin D1, p16, Bax, VEGF, E-cadherin, vimentin, N-cadherin and SDAD1 expressions were determined by western blot and qRT-PCR. CCK-8, tubule formation, and Transwell assays were employed to detect proliferation, angiogenesis, and migration/invasion of COAD cells, respectively. The relationship between LINC01232 and miR-181a-5p was predicted by LncBase Predicted v.2, and then verified through dual luciferase reporter gene assay. According to the results, LINC01232 was highly expressed in COAD cells and enhanced proliferation, angiogenesis, migration, and invasion of COAD cells. Downregulated LINC01232 promoted expression of p53 and p16, and inhibited c-myc, Bcl-2 and cyclin D1 expressions in COAD cells, while upregulation of LINC01232 generated the opposite effects. LINC01232 was negatively correlated with miR-181a-5p while downregulated miR181a-5p could reverse the effects of siLINC01232 on cell proliferation, angiogenesis, migration, and invasion. Similarly, miR-181a-5p mimic could also offset the effect of LINC01232 overexpression. SiLINC01232 increased the expressions of Bax and E-cadherin, and decreased the expressions of VEGF, vimentin, N-cadherin and SDAD1, which were partially attenuated by miR-181a-5p inhibitor. Collectively, LINC01232 enhances the proliferation, migration, invasion, and angiogenesis of COAD cells by decreasing miR-181a-5p expression.

Inhibitory Effects of The Flower from Abeliophyllum distichum cv. Okhwang 1 on Melanogenesis in B16 F10 Cells

  • Mi-Ji Noh;Hye-Jeong Park;So-Yeon Han;Jeong-Yong Park;Seo-Hyun Yun;Soo-Yeon Kim;Tae-Won Jang;Jae-Ho Park
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2021년도 춘계학술대회
    • /
    • pp.53-53
    • /
    • 2021
  • Abeliophyllum distichum Nakai (A. distichum), endemic species of Korea, is classified according to the petals and calyx colors. Recently, A. distichum cv. Okhwang 1, which has the golden flower, designated the first official cultivar improved from A. distichum species. The study on the chloroplast genome of A. distichum cv. Okhwang 1 have been reported, but no studies on bioactivity such as antioxidant, anti-inflammatory, and anti-cancer have been progressed. This study was conducted to evaluate the inhibition on melanogenesis of the flower from A. distichum cv. Okhwang 1 (FAO). Antioxidant activity was measured using DPPH and ABTS radical scavenging assays. Inhibition effects on melanogenesis of FAO were confirmed by expression of tyrosinase-related proteins and mRNAs using immunoblotting and RT-qPCR. Tyrosinase is an enzyme that regulates both stimulation and inhibition of melanogenesis. Stimulated MITF in cellular levels increases the expressions of tyrosinase, TRP-1, and TRP-2 to induce melanogenesis. As a result, FAO inhibited the expression of MITF, followed by down-regulated tyrosinase, TRP-1, and TRP-2, which lead to inhibit melanin overproduction. In conclusion, these results indicated that FAO reduced reactive oxygen species (ROS) and markedly inhibited the expression of melanin-related factors. The present study suggested providing that FAO has the potential for development as a functional cosmetic material derived from natural.

  • PDF

Analysis of the mechanism of fibrauretine alleviating Alzheimer's disease based on transcriptomics and proteomics

  • Lu Han;Weijia Chen;Ying Zong;Yan Zhao;Jianming Li;Zhongmei He;Rui Du
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제28권4호
    • /
    • pp.361-377
    • /
    • 2024
  • The dried rattan stem of the Fibraurea Recisa Pierre plant contains the active ingredient known as fibrauretine (FN). Although it greatly affects Alzheimer's disease (AD), the mechanism of their effects still remains unclear. Proteomics and transcriptomics analysis methods were used in this study to determine the mechanism of FN in the treatment of AD. AD model is used through bilateral hippocampal injection of Aβ1-40. After successful modeling, FN was given for 30 days. The results showed that FN could improve the cognitive dysfunction of AD model rats, reduce the expression of AE and P-Tau, increase the content of acetylcholine and reduce the activity of acetylcholinesterase. The Kyoto Encyclopedia of Genes and Genomes enriched differentially expressed genes and proteins are involved in signaling pathways including metabolic pathway, AD, pathway in cancer, PI3K-AKT signaling pathway, and cAMP signaling pathway. Transcriptomics and proteomics sequencing resulted in 19 differentially expressed genes and proteins. Finally, in contrast to the model group, after FN treatment, the protein expressions and genes associated with the PI3K-AKT pathway were significantly improved in RT-qPCR and Western blot and assays. This is consistent with the findings of transcriptomic and proteomic analyses. Our study found that, FN may improve some symptoms of AD model rats through PI3K-AKT signaling pathway.

${\alpha}$-Cyperone Alleviates Lung Cell Injury Caused by Staphylococcus aureus via Attenuation of ${\alpha}$-Hemolysin Expression

  • Luo, M.;Qiu, J.;Zhang, Y.;Wang, J.;Dong, J.;Li, H.;Leng, B.;Zhang, Q.;Dai, X.;Niu, X.;Zhao, S.;Deng, X.
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권8호
    • /
    • pp.1170-1176
    • /
    • 2012
  • In this study, we aimed to evaluate the effect of ${\alpha}$-cyperone on S. aureus. We used a hemolysin test to examine the hemolytic activity in supernatants of S. aureus cultured with increasing concentrations of ${\alpha}$-cyperone. In addition, we evaluated the production of ${\alpha}$-hemolysin (Hla) by Western blotting. Real-time RT-PCR was performed to test the expression of hla (the gene encoding Hla) and agr (accessory gene regulator). Furthermore, we investigated the protective effect of ${\alpha}$-cyperone on Hla-induced injury of A549 lung cells by live/dead and cytotoxicity assays. We showed that in the presence of subinhibitory concentrations of ${\alpha}$-cyperone, Hla production was markedly inhibited. Moreover, ${\alpha}$-cyperone protected lung cells from Hla-induced injury. These findings indicate that ${\alpha}$-cyperone is a promising inhibitor of Hla production by S. aureus and protects lung cells from this bacterium. Thus, ${\alpha}$-cyperone may provide the basis for a new strategy to combat S. aureus pneumonia.