• Title/Summary/Keyword: qPCR assays

Search Result 83, Processing Time 0.024 seconds

Measurement of Human Cytochrome P450 Enzyme Induction Based on Mesalazine and Mosapride Citrate Treatments Using a Luminescent Assay

  • Kim, Young-Hoon;Bae, Young-Ji;Kim, Hyung Soo;Cha, Hey-Jin;Yun, Jae-Suk;Shin, Ji-Soon;Seong, Won-Keun;Lee, Yong-Moon;Han, Kyoung-Moon
    • Biomolecules & Therapeutics
    • /
    • v.23 no.5
    • /
    • pp.486-492
    • /
    • 2015
  • Drug metabolism mostly occurs in the liver. Cytochrome P450 (CYP) is a drug-metabolizing enzyme that is responsible for many important drug metabolism reactions. Recently, the US FDA and EU EMA have suggested that CYP enzyme induction can be measured by both enzymatic activity and mRNA expression. However, these experiments are time-consuming and their interassay variability can lead to misinterpretations of the results. To resolve these problems and establish a more powerful method to measure CYP induction, we determined CYP induction by using luminescent assay. Luminescent CYP assays link CYP enzyme activity to firefly luciferase luminescence technology. In this study, we measured the induction of CYP isozymes (1A2, 2B6, 2C9, and 3A4) in cryopreserved human hepatocytes (HMC424, 478, and 493) using a luminometer. We then examined the potential induction abilities (unknown so far) of mesalazine, a drug for colitis, and mosapride citrate, which is used as an antispasmodic drug. The results showed that mesalazine promotes CYP2B6 and 3A4 activities, while mosapride citrate promotes CYP1A2, 2B6, and 3A4 activities. Luminescent CYP assays offer rapid and safe advantages over LC-MS/MS and qRT-PCR methods. Furthermore, luminescent CYP assays decrease the interference between the optical properties of the test compound and the CYP substrates. Therefore, luminescent CYP assays are less labor intensive, rapid, and can be used as robust tools for high-throughput CYP screening during early drug discovery.

Comparison of Laboratory Tests Applied for Diagnosing the SARS-CoV-2 Infection (SARS-CoV-2 감염의 진단에 이용되는 검사실 테스트의 비교)

  • Lee, Chang-Gun;Lee, Dongsup
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.54 no.2
    • /
    • pp.79-94
    • /
    • 2022
  • Due to the highly contagious nature and severity of the respiratory diseases caused by COVID-19, economical and accurate tests are required to better monitor and prevent the spread of this contagion. As the structural and molecular properties of SARS-CoV-2 were being revealed during the early stage of the COVID-19 pandemic, many manufacturers of COVID-19 diagnostic kits actively invested in the design, development, validation, verification, and implementation of diagnostic tests. Currently, diagnostic tests for SARS-CoV-2 are the most widely used and validated techniques for rapid antigen, and immuno-serological assays for specific IgG and IgM antibody tests and molecular diagnostic tests. Molecular diagnostic assays are the gold standard for direct detection of viral RNA in individuals suspected to be infected with SARS-CoV-2. Antibody-based serological tests are indirect tests applied to determine COVID-19 prevalence in the community and identify individuals who have obtained immunity. In the future, it is necessary to explore technical problems encountered in the early stages of global or regional outbreaks of pandemics and provide future directions for better diagnostic tests. This article evaluates the commercially available and FDA-approved molecular and immunological diagnostic assays and analyzes their performance characteristics.

MicroRNA-301b promotes cell proliferation and apoptosis resistance in triple-negative breast cancer by targeting CYLD

  • Song, Hongming;Li, Dengfeng;Wu, Tianqi;Xie, Dan;Hua, Kaiyao;Hu, Jiashu;Deng, Xiaochong;Ji, Changle;Deng, Yijun;Fang, Lin
    • BMB Reports
    • /
    • v.51 no.11
    • /
    • pp.602-607
    • /
    • 2018
  • Aberrant expression of microRNAs (miRNAs) plays important roles in carcinogenesis and tumor progression. However, the expression and biological role of miR-301b in triple-negative breast cancer (TNBC) remains unclear. Here we aimed to evaluate the roles and mechanisms of miR-301b in TNBC cells. miR-301b expression was assessed in TNBC specimens and cell lines by quantitative Real-Time PCR (qRT-PCR). TNBC cells were transfected with miR-301b mimics, inhibitors or Cylindromatosis (CYLD) small interfering RNA (siRNA) using Lipofectamine 2000. The functional roles of miR-301b were determined by cell proliferation, colony formation, and apoptosis assays. Western blots and qRT-PCR were used to measure the expression of mRNAs and proteins in the cells. We found that miR-301b was upregulated in TNBC specimens and cell lines. Overexpression of miR-301b promoted cell proliferation in TNBC cells, while inhibited the apoptosis induced by 5-FU. CYLD was downregulated by miR-301b at both mRNA and protein levels in TNBC cells. Dual-luciferase report assay confirmed that miR-301b downregulated CYLD by direct interaction with the 3'-untranslated region(3'-UTR) of CYLD mRNA. $NF-{\kappa}B$ activation was mechanistically associated with miR-301b-mediated downregulation of CYLD. However, inhibition of miR-301b reversed all the effects of miR-301b. In conclusion, miR-301b plays an oncogenic role in TNBC possibly by downregulating CYLD and subsequently activating $NF-{\kappa}B$ p65, and this may provide a novel therapeutic approach for TNBC.

Molecular Cloning and Characterization of Bovine CYP26A1 Promoter (소 CYP26A1 유전자 프로모터의 molecular cloning 및 특성)

  • Kwak, Inseok
    • Journal of Life Science
    • /
    • v.26 no.1
    • /
    • pp.42-49
    • /
    • 2016
  • The retinoic acid (RA) plays an important role in the growth and development of many cells, and bioactive RA concentration is regulated by several enzymes, including CYP26A1. The expression of the CYP26A1 gene is regulated by RA, and the CYP26A1 gene is one of the candidates for RA-responsive genes. Although CYP26A1 genes are cloned from several animals, cloning of the CYP26A1 gene from cows has not been reported yet. The promoter region of CYP26A1 from cows was cloned by PCR and analyzed by sequence alignment with human and mouse CYP26A1. The RA-responsive element (RARE), DR-5 (ttggg), was located in this region and was perfectly conserved. The promoter region of bovine CYP26A1, which contains DR-5, was ligated to the luciferase reporter gene on transient transfection assays. The expression of CYP26A1-Luc promoter was activated by ATRA treatment in lung-derived mtCC cells. Co-transfection with RAR-α or -β with ATRA significantly activates the expression of CYP26A1-Luc promoter; however, it was less effective with either RAR-γ or RXR-γ. In addition, the endogenous gene expressions measured by Q-RT-PCR in mtCC cells were not significantly affected by ATRA treatment for 2 days; however, the expression of the endogenous CYP26A1 gene was diminished sharply at day 3 with ATRA treatment. In conclusion, the promoter region of bovine CYP26A1 contains conserved DR-5 RARE, which functions as a binding site for RAR-α or -β, and it is involved in the regulation of CYP26A1 gene expression and the control of RA signaling in mtCC cells.

miR-181b as a Potential Molecular Target for Anticancer Therapy of Gastric Neoplasms

  • Guo, Jian-Xin;Tao, Qing-Song;Lou, Peng-Rong;Chen, Xiao-Chun;Chen, Jun;Yuan, Guang-Bo
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.5
    • /
    • pp.2263-2267
    • /
    • 2012
  • Objective: MicroRNAs (miRNAs) play important roles in carcinogenesis. The aim of the present study was to explore the effects of miR-181b on gastric cancer. Methods: The expression level of miR-181b was quantified by qRT-PCR. MTT, flow cytometry and matrigel invasion assays were used to test proliferation, apoptosis and invasion of miR-181b stable transfected gastric cancer cells. Results: miR-181b was aberrantly overexpressed in gastric cancer cells and primary gastric cancer tissues. Further experiments demonstrated inducible expression of miR-181b by Helicobacter pylori treatment. Cell proliferation, migration and invasion in the gastric cancer cells were significantly increased after miR-181b transfection and apoptotic cells were also increased. Furthermore, overexpression of miR-181b downregulated the protein level of tissue inhibitor of metalloproteinase 3 (TIMP3). Conclusion: The upregulation of miR-181b may play an important role in the progress of gastric cancer and miR-181b maybe a potential molecular target for anticancer therapeutics of gastric cancer.

Polygonatum sibiricum component liquiritigenin restrains breast cancer cell invasion and migration by inhibiting HSP90 and chaperone-mediated autophagy

  • Suli Xu;Zhao Ma;Lihua Xing;Weiqing Cheng
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.4
    • /
    • pp.379-387
    • /
    • 2024
  • Breast cancer (BC) is most commonly diagnosed worldwide. Liquiritigenin is a flavonoid found in various species of the Glycyrrhiza genus, showing anti-tumor activity. This article was to explore the influences of liquiritigenin on the biological behaviors of BC cells and its underlying mechanism. BC cells were treated with liquiritigenin alone or transfected with oe-HSP90 before liquiritigenin treatment. RT-qPCR and Western blotting were employed to examine the levels of HSP90, Snail, E-cadherin, HSC70, and LAMP-2A. Cell viability, proliferation, migration, and invasion were evaluated by performing MTT, colony formation, scratch, and Transwell assays, respectively. Liquiritigenin treatment reduced HSP90 and Snail levels and enhanced E-cadherin expression as well as inhibiting the proliferation, migration, and invasion of BC cells. Moreover, liquiritigenin treatment decreased the expression of HSC70 and LAMP-2A, proteins related to chaperone-mediated autophagy (CMA). HSP90 overexpression promoted the CMA, invasion, and migration of BC cells under liquiritigenin treatment. Liquiritigenin inhibits HSP90-mediated CMA, thereby suppressing BC cell growth.

High Efficiency Binding Aptamers for a Wide Range of Bacterial Sepsis Agents

  • Graziani, Ana Claudia;Stets, Maria Isabel;Lopes, Ana Luisa Kalb;Schluga, Pedro Henrique Caires;Marton, Soledad;Ferreira, Ieda Mendes;de Andrade, Antero Silva Ribeiro;Krieger, Marco Aurelio;Cardoso, Josiane
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.4
    • /
    • pp.838-843
    • /
    • 2017
  • Sepsis is a major health problem worldwide, with an extremely high rate of morbidity and mortality, partly due to delayed diagnosis during early disease. Currently, sepsis diagnosis requires bacterial culturing of blood samples over several days, whereas PCR-based molecular diagnosis methods are faster but lack sensitivity. The use of biosensors containing nucleic acid aptamers that bind targets with high affinity and specificity could accelerate sepsis diagnosis. Previously, we used the systematic evolution of ligands by exponential enrichment technique to develop the aptamers Antibac1 and Antibac2, targeting the ubiquitous bacterial peptidoglycan. Here, we show that these aptamers bind to four gram-positive and seven gram-negative bacterial sepsis agents with high binding efficiency. Thus, these aptamers could be used in combination as biological recognition elements in the development of biosensors that are an alternative to rapid bacteria detection, since they could provide culture and amplification-free tests for rapid clinical sepsis diagnosis.

Transcriptional Activity of an Estrogen Receptor β Subtype in the Medaka Oryzias dancena

  • Maeng, Sejung;Yoon, Sung Woo;Kim, Eun Jeong;Nam, Yoon Kwon;Sohn, Young Chang
    • Development and Reproduction
    • /
    • v.23 no.4
    • /
    • pp.333-344
    • /
    • 2019
  • In vertebrate reproductive system, estrogen receptor (ER) plays a pivotal role in mediation of estrogenic signaling pathways. In the present study, we report the cDNA cloning, expression analysis, and transcriptional activity of ERβ1 subtype from medaka Oryzias dancena. The deduced O. dancena ERβ1 (odERβ1; 519 amino acids) contained six characteristic A/B to E/F domains with very short activation function 2 region (called AF2). A phylogenetic analysis indicated that odERβ1 was highly conserved among teleost ERβ1 subgroup. A conventional RT-PCR revealed that the odERβ1 transcripts were widely distributed in the multiple tissues, the ovary, brain, gill, intestine, kidney, and muscle. Further, the relatively higher odERβ1 expressions in the ovary and brain were clearly reproduced in RT-qPCR assay. When HA-fused odERβ1 expression vector was transfected into HEK293 cells, an immunoreactivity for odERβ1 was mainly detected in the nucleus part. Finally, an estrogen responsive element driven luciferase reporter assays demonstrated that the transcriptional activity of odERβ1 significantly increased by estradiol-17β (E2) in a dose dependent manner (p<0.05). However, fold-activation of odERβ1 in the presence of E2 was markedly weak, when it compared with those of O. latipes ERβ1. Taken together, these data suggest that odERβ1 represents a functional variant of teleost ERβ subtype and provides a basic tool allowing future studies examining the function of F domain of ERβ1 subtype and expanding our knowledge of ERβ evolution.

Isoliquiritigenin attenuates spinal tuberculosis through inhibiting immune response in a New Zealand white rabbit model

  • Wang, Wenjing;Yang, Baozhi;Cui, Yong;Zhan, Ying
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.4
    • /
    • pp.369-377
    • /
    • 2018
  • Spinal tuberculosis (ST) is the tuberculosis caused by Mycobacterium tuberculosis (Mtb) infections in spinal curds. Isoliquiritigenin (4,2',4'-trihydroxychalcone, ISL) is an anti-inflammatory flavonoid derived from licorice (Glycyrrhiza uralensis), a Chinese traditional medicine. In this study, we evaluated the potential of ISL in treating ST in New Zealand white rabbit models. In the model, rabbits (n=40) were infected with Mtb strain H37Rv or not in their $6^{th}$ lumbar vertebral bodies. Since the day of infection, rabbits were treated with 20 mg/kg and 100 mg/kg of ISL respectively. After 10 weeks of treatments, the adjacent vertebral bone tissues of rabbits were analyzed through Hematoxylin-Eosin staining. The relative expression of Monocyte chemoattractant protein-1 (MCP-1/CCL2), transcription factor ${\kappa}B$ ($NF-{\kappa}B$) p65 in lymphocytes were verified through reverse transcription quantitative real-time PCR (RT-qPCR), western blotting and enzyme-linked immunosorbent assays (ELISA). The serum level of interleukin (IL)-2, IL-4, IL-10 and interferon ${\gamma}$ ($IFN-{\gamma}$) were evaluated through ELISA. The effects of ISL on the phosphorylation of $I{\kappa}B{\alpha}$, $IKK{\alpha}/{\beta}$ and p65 in $NF-{\kappa}B$ signaling pathways were assessed through western blotting. In the results, ISL has been shown to effectively attenuate the granulation inside adjacent vertebral tissues. The relative level of MCP-1, p65 and IL-4 and IL-10 were retrieved. $NF-{\kappa}B$ signaling was inhibited, in which the phosphorylation of p65, $I{\kappa}B{\alpha}$ and $IKK{\alpha}/{\beta}$ were suppressed whereas the level of $I{\kappa}B{\alpha}$ were elevated. In conclusion, ISL might be an effective drug that inhibited the formation of granulomas through downregulating MCP-1, $NF-{\kappa}B$, IL-4 and IL-10 in treating ST.

Transgenic expression of rice MYB102 (OsMYB102) delays leaf senescence and decreases abiotic stress tolerance in Arabidopsis thaliana

  • Piao, Weilan;Sakuraba, Yasuhito;Paek, Nam-Chon
    • BMB Reports
    • /
    • v.52 no.11
    • /
    • pp.653-658
    • /
    • 2019
  • MYB-type transcription factors (TFs) play important roles in plant growth and development, and in the rapid responses to unfavorable environmental conditions. We recently reported the isolation and characterization of a rice (Oryza sativa) MYB TF, OsMYB102, which is involved in the regulation of leaf senescence by downregulating abscisic acid (ABA) biosynthesis and the downstream signaling response. Based on the similarities of their sequences and expression patterns, OsMYB102 appears to be a homolog of the Arabidopsis thaliana AtMYB44 TF. Since AtMYB44 is a key regulator of leaf senescence and abiotic stress responses, it is important to examine whether AtMYB44 homologs in other plants also act similarly. Here, we generated transgenic Arabidopsis plants expressing OsMYB102 (OsMYB102-OX). The OsMYB102-OX plants showed a delayed senescence phenotype during dark incubation and were more susceptible to salt and drought stresses, considerably similar to Arabidopsis plants overexpressing AtMYB44. Real-time quantitative PCR (RT-qPCR) revealed that, in addition to known senescence-associated genes, genes encoding the ABA catabolic enzymes AtCYP707A3 and AtCYP707A4 were also significantly upregulated in OsMYB102-OX, leading to a significant decrease in ABA accumulation. Furthermore, protoplast transient expression and chromatin immunoprecipitation assays revealed that OsMYB102 directly activated AtCYP707A3 expression. Based on our findings, it is probable that the regulatory functions of AtMYB44 homologs in plants are highly conserved and they have vital roles in leaf senescence and the abiotic stress responses.