• Title/Summary/Keyword: qPCR assays

Search Result 87, Processing Time 0.021 seconds

Simple and rapid colorimetric detection of African swine fever virus by loop-mediated isothermal amplification assay using a hydroxynaphthol blue metal indicator

  • Park, Ji-Hoon;Kim, Hye-Ryung;Chae, Ha-Kyung;Park, Jonghyun;Jeon, Bo-Young;Lyoo, Young S.;Park, Choi-Kyu
    • Korean Journal of Veterinary Service
    • /
    • v.45 no.1
    • /
    • pp.19-30
    • /
    • 2022
  • In this study, a simple loop-mediated isothermal amplification (LAMP) combined with visual detection method (vLAMP) assay was developed for the rapid and specific detection of African swine fever virus (ASFV), overcoming the shortcomings of previously described LAMP assays that require additional detection steps or pose a cross-contamination risk. The assay results can be directly detected by the naked eye using hydroxynaphthol blue after incubation for 40 min at 62℃. The assay specifically amplified ASFV DNA and no other viral nucleic acids. The limit of detection of the assay was <50 DNA copies/reaction, which was ten times more sensitive than conventional polymerase chain reaction (cPCR) and comparable to real-time PCR (qPCR). For clinical evaluation, the ASFV detection rate of vLAMP was higher than cPCR and comparable to OIE-recommended qPCR, showing 100% concordance, with a κ value (95% confidence interval) of 1 (1.00~1.00). Considering the advantages of high sensitivity and specificity, no possibility for cross-contamination, and being able to be used as low-cost equipment, the developed vLAMP assay will be a valuable tool for detecting ASFV from clinical samples, even in resource-limited laboratories.

Implementation of point-of-care platforms for rapid detection of porcine circovirus type 2

  • Chiao-Hsu Ke;Mao-Yuan Du;Wang-Ju Hsieh;Chiu-Chiao Lin;James Mingjuh Ting;Ming-Tang Chiou;Chao-Nan Lin
    • Journal of Veterinary Science
    • /
    • v.25 no.2
    • /
    • pp.28.1-28.11
    • /
    • 2024
  • Background: Porcine circovirus type 2 (PCV2) infection is ubiquitous around the world. Diagnosis of the porcine circovirus-associated disease requires clinic-pathological elements together with the quantification of viral loads. Furthermore, given pig farms in regions lacking access to sufficient laboratory equipment, developing diagnostic devices with high accuracy, accessibility, and affordability is a necessity. Objectives: This study aims to investigate two newly developed diagnostic tools that may satisfy these criteria. Methods: We collected 250 specimens, including 170 PCV2-positive and 80 PCV2-negative samples. The standard diagnosis and cycle threshold (Ct) values were determined by quantitative polymerase chain reaction (qPCR). Then, two point-of-care (POC) diagnostic platforms, convective polymerase chain reaction (cPCR, qualitative assay: positive or negative results are shown) and EZtargex (quantitative assay: Ct values are shown), were examined and analyzed. Results: The sensitivity and specificity of cPCR were 88.23% and 100%, respectively; the sensitivity and specificity of EZtargex were 87.65% and 100%, respectively. These assays also showed excellent concordance compared with the qPCR assay (κ = 0.828 for cPCR and κ = 0.820 for EZtargex). The statistical analysis showed a great diagnostic power of the EZtargex assay to discriminate between samples with different levels of positivity. Conclusions: The two point-of-care diagnostic platforms are accurate, rapid, convenient and require little training for PCV2 diagnosis. These POC platforms can discriminate viral loads to predict the clinical status of the animals. The current study provided evidence that these diagnostics were applicable with high sensitivity and specificity in the diagnosis of PCV2 infection in the field.

Enhancing Conventional PCR for Detection of Erwinia amylovora (화상병원세균 검출을 위한 Conventional PCR 향상)

  • Hyun Ju Choi;Yeon Ju Kim;Jeong Ho Choi;Dong Hyuk Choi;Duck Hwan Park
    • Research in Plant Disease
    • /
    • v.30 no.3
    • /
    • pp.294-299
    • /
    • 2024
  • Polymerase chain reaction (PCR) methods, including conventional PCR (cPCR) and quantitative real-time PCR (qRT-PCR), with both plasmid- and chromosome-targeting primers, are currently the most reliable methods for detecting Erwinia amylovora due to their high sensitivity and specificity. Despite qRT-PCR's quantitative advantage, cPCR remains an attractive method to detect this bacterium in initial screenings of suspected host plants, as it is cost-effective and does not require skilled personnel in well-equipped laboratories. This study aimed to significantly improve cPCR robustness via application of bovine serum albumin (BSA) as a PCR facilitator, with a modified EaF/R primer pair, as previously reported. Experiments have shown that simple supplementation with BSA (10 mg/ml) enhances cPCR reactions using templates such as genomic DNA, bacterial cells, and infected symptomless host organs, including immature apple fruits and seedlings, with EaF/R primers. The cPCR method described in this study is simple, specific, and reliable, and can be applied in routine assays to diagnose fire blight.

Diosgenin Inhibits hTERT Gene Expression in the A549 Lung Cancer Cell Line

  • Mohammad, Rahmati Yamchi;Somayyeh, Ghareghomi;Gholamreza, Haddadchi;Majid, Mobasseri;Yousef, Rasmi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6945-6948
    • /
    • 2013
  • Background: Diosgenin, a steroidal saponin from a therapeutic herb, fenugreek (Trigonellafoenum-graceum L.), has been recognized to have anticancer properties. Telomerase activity is not detected in typical healthy cells, while in cancer cell telomerase expression is reactivated, therefore providing a promising cancer therapeutic target. Materials and Methods: We studied the inhibitory effect of diosgenin on human telomerase reverse transcriptase gene (hTERT) expression which is critical for telomerase activity. MTT- assays and qRT-PCR analysis were conducted to assess cytotoxicity and hTERT gene expression inhibition effects, respectively. Results: MTT results showed that $IC_{50}$ values for 24, 48 and 72h after treatment were 47, 44 and $43{\mu}M$, respectively. Culturing cells with diosgenin treatment caused down-regulation of hTERT expression. Discussion: These results show that diosgenin inhibits telomerase activity by down-regulation of hTERT gene expression in the A549 lung cancer cell line.

Knockdown of Circ_0000144 Suppresses Cell Proliferation, Migration and Invasion in Gastric Cancer Via Sponging MiR-217

  • Ji, Fengcun;Lang, Chao;Gao, Pengfei;Sun, Huanle
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.6
    • /
    • pp.784-793
    • /
    • 2021
  • Previous studies have uncovered the role of circ_0000144 in various tumors. Here, we investigated the function and mechanism of circ_0000144 in gastric cancer (GC) progression. The expression of circ_0000144 in GC tissues and cells was detected through quantitative real-time polymerase chain reaction (qRT-PCR) method. Gain- and loss-of-function experiments including colony formation, wound healing and transwell assays were performed to examine the role of circ_0000144 in GC cells. Furthermore, western blot was conducted to determine the expressions of epithelial mesenchymal transition (EMT)-related proteins. The interaction between circ_0000144 and miR-217 was analyzed by bioinformatic analysis and luciferase reporter assays. The circ_0000144 expression was obviously upregulated in GC tissues and cells. Silencing of circ_0000144 inhibited cell proliferation, migration and invasion of GC cells, but ectopic expression of circ_0000144 showed the opposite results. Moreover, circ_0000144 sponged miR-217, and rescue assays revealed that silencing miR-217 expression reversed the inhibitory effect of circ_0000144 knockdown on the progress of GC. Our findings reveal that circ_0000144 inhibition suppresses GC cell proliferation, migration and invasion via absorbing miR-217, providing a new biomarker and potential therapeutic target for treatment of GC.

A LuxR-type Transcriptional Regulator, PsyR, Coordinates Regulation of Pathogenesis-related Genes in Pseudomonas syringae pv. tabaci (Pseudomonas syringae pv. tabaci 에서 LuxR-type 전사조절자인 PsyR에 의한 병원성 유전자들의 조절)

  • Choi, Yeon Hee;Lee, Jun Seung;Yun, Sora;Baik, Hyung Suk
    • Journal of Life Science
    • /
    • v.25 no.2
    • /
    • pp.136-150
    • /
    • 2015
  • Pseudomonas syringae pathovar tabaci is a plant pathogenic bacterium that causes wildfire disease in tobacco plants. In P. syringae pv. tabaci, PsyI, a LuxI-type protein, acts as an AHL synthase, while primary and secondary sequence analysis of PsyR has revealed that it is a homolog of the LuxR-type transcriptional regulator that responds to AHL molecules. In this study, using phenotypic and genetic analyses in P. syringae pv. tabaci, we show the effect of PsyR protein as a quorum-sensing (QS) transcriptional regulator. Regulatory effects of PsyR on swarming motility and production of siderophores, tabtoxin, and N-acyl homoserine lactones were examined via phenotypic assays, and confirmed by quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR). Further qRT-PCR showed that PsyR regulates expression of these virulence genes in response to environmental signals. However, an upstream region of the gene was not bound with purified MBP-PsyR protein; rather, PsyR was only able to shift the upstream region of psyI. These results suggested that PsyR may be indirectly controlled via intermediate-regulatory systems and that auto-regulation by PsyR does not occur.

Identification and validation of putative biomarkers by in silico analysis, mRNA expression and oxidative stress indicators for negative energy balance in buffaloes during transition period

  • Savleen Kour;Neelesh Sharma;Praveen Kumar Guttula;Mukesh Kumar Gupta;Marcos Veiga dos Santos;Goran Bacic;Nino Macesic;Anand Kumar Pathak;Young-Ok Son
    • Animal Bioscience
    • /
    • v.37 no.3
    • /
    • pp.522-535
    • /
    • 2024
  • Objective: Transition period is considered from 3 weeks prepartum to 3 weeks postpartum, characterized with dramatic events (endocrine, metabolic, and physiological) leading to occurrence of production diseases (negative energy balance/ketosis, milk fever etc). The objectives of our study were to analyze the periodic concentration of serum beta-hydroxy butyric acid (BHBA), glucose and oxidative markers along with identification, and validation of the putative markers of negative energy balance in buffaloes using in-silico and quantitative real time-polymerase chain reaction (qRT-PCR) assay. Methods: Out of 20 potential markers of ketosis identified by in-silico analysis, two were selected and analyzed by qRT-PCR technique (upregulated; acetyl serotonin o-methyl transferase like and down regulated; guanylate cyclase activator 1B). Additional two sets of genes (carnitine palmotyl transferase A; upregulated and Insulin growth factor; downregulated) that have a role of hepatic fatty acid oxidation to maintain energy demands via gluconeogenesis were also validated. Extracted cDNA (complementary deoxyribonucleic acid) from the blood of the buffaloes were used for validation of selected genes via qRTPCR. Concentrations of BHBA, glucose and oxidative stress markers were identified with their respective optimized protocols. Results: The analysis of qRT-PCR gave similar trends as shown by in-silico analysis throughout the transition period. Significant changes (p<0.05) in the levels of BHBA, glucose and oxidative stress markers throughout this period were observed. This study provides validation from in-silico and qRT-PCR assays for potential markers to be used for earliest diagnosis of negative energy balance in buffaloes. Conclusion: Apart from conventional diagnostic methods, this study improves the understanding of putative biomarkers at the molecular level which helps to unfold their role in normal immune function, fat synthesis/metabolism and oxidative stress pathways. Therefore, provides an opportunity to discover more accurate and sensitive diagnostic aids.

Prevalence and co-infection status of three pathogenic porcine circoviruses (PCV2, PCV3, and PCV4) by a newly established triplex real-time polymerase chain reaction assay

  • Kim, Hye-Ryung;Park, Jonghyun;Kim, Won-Il;Lyoo, Young S.;Park, Choi-Kyu
    • Korean Journal of Veterinary Service
    • /
    • v.45 no.2
    • /
    • pp.87-99
    • /
    • 2022
  • A novel porcine circovirus 4 (PCV4) was recently emerged in Chinese and Korean pig herds, which provided epidemiological situation where three pathogenic PCVs, PCV2, PCV3, and newly emerged PCV4, could co-infect pig herds in these countries. In this study, a new triplex quantitative real-time polymerase chain reaction (tqPCR) method was developed for the rapid and differential detection of these viruses. The assay specifically amplified each viral capsid gene, whereas no other porcine pathogenic genes were detected. The detection limit of the assay was below 10 copies/µL and the assay showed high repeatability and reproducibility. In the clinical evaluation using 1476 clinical samples from 198 Korean pig farms, the detection rates of PCV2, PCV3 and PCV4 by the tqPCR assay were 13.8%, 25.4%, and 3.8%, respectively, which were 100% agreement with those of previously reported monoplex qPCR assays for PCV2, PCV3, and PCV4, with a κ value (95% CI) of 1 (1.00~1.00). The prevalence of PCV2, PCV3, and PCV4 at the farm levels were 46.5%, 63.6%, and 19.7%, respectively. The co-infection analysis for tested pig farms showed that single infection rates for PCV2, PCV3, and PCV4 were 28.8%, 44.4%, and 9.6%, respectively, the dual infection rates of PCV2 and PCV3, PCV2 and PCV4, and PCV3 and PCV4 were 12.6%, 3.5%, and 5.1%, respectively, and the triple infection rate for PCV2, PCV3, and PCV4 was 1.5%. These results demonstrate that three pathogenic PCVs are widely spread, and their co-infections are common in Korean pig herds, and the newly developed tqPCR assay will be useful for etiological and epidemiological studies of these pathogenic PCVs.

MiR-323-5p acts as a Tumor Suppressor by Targeting the Insulin-like Growth Factor 1 Receptor in Human Glioma Cells

  • Lian, Hai-Wei;Zhou, Yun;Jian, Zhi-Hong;Liu, Ren-Zhong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.23
    • /
    • pp.10181-10185
    • /
    • 2015
  • Background: MicroRNAs, small noncoding RNA molecules, can regulate mammalian cell growth, apoptosis and differentiation by controlling the expression of target genes. The aim of this study was to investigate the function of miR-323-5p in the glioma cell line, U251. Materials and Methods: After over-expression of miR-323-5p using miR-323-5p mimics, cell growth, apoptosis and migration were tested by MTT, flow cytometry and cell wound healing assay, respectively. We also assessed the influence of miR-323-5p on the mRNA expression of IGF-1R by quantitative real-time reverse transcriptase PCR (qRT-PCR), and on the protein levels by Western blot analysi. In addition, dual-luciferase reporter assays were performed to determine the target site of miR-323-5p to IGF-1R 3'UTR. Results: Our findings showed that over-expression of miR-323-5p could promote apoptosis of U251 and inhibit the proliferation and migration of the glioma cells. Conclusions: This study demonstrated that increased expression of miR-323-5p might be related to glioma progression, which indicates a potential role of miR-323-5p for clinical therapy.

Effects of PTTG Down-regulation on Proliferation and Metastasis of the SCL-1 Cutaneous Squamous Cell Carcinoma Cell Line

  • Xia, Yong-Hua;Li, Min;Fu, Dan-Dan;Xu, Su-Ling;Li, Zhan-Guo;Liu, Dong;Tian, Zhong-Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6245-6248
    • /
    • 2013
  • Aims: To study effects of down-regulation of pituitary tumor-transforming gene (PTTG) on proliferation and metastasis ability of the SCL-1 cutaneous squamous cell carcinoma (CSCC) cell line and explore related mechanisms. Methods: SCL-1 cells were divided into 3 groups (untreated, siRNA control and PTTG siRNA). Cell proliferation assays were performed using a CCK-8 kit and proliferation and metastasis ability were analyzed using Boyden chambers. In addition, expression of MMP-2 and MMP-9 was detected by r-time qPCR and Western blotting. Results: Down-regulation of PTTG could markedly inhibit cell proliferation in SCL-1 cells, compared to untreated and control siRNA groups (P < 0.05). Real-time qPCR demonstrated that expression levels of PTTG, MMP-2 and MMP-9 in the PTTG siRNA group were 0.8%, 23.2% and 21.3% of untreated levels. Western blotting revealed that expression of PTTG, MMP-2 and MMP-9 proteins in the PTTG siRNA group was obviously down-regulated. The numbers of migrating cells ($51.38{\pm}4.71$) in the PTTG siRNA group was obviously lower than that in untreated group ($131.33{\pm}6.12$) and the control siRNA group ($127.72{\pm}5.20$) (P < 0.05), suggesting that decrease of proliferation and metastasis ability mediated by PTTG knock-down may be closely correlated with down-regulation of MMP-2 and MMP-9 expression. Conclusion: Inhibition of PTTG expression may be a new target for therapy of CSCC.